ZEEMAN'S THEOREM IN NONDECOMPOSABLE SPACES

  • Duma, Adrian (Department of Mathematics University of Craiova)
  • Published : 1997.05.01

Abstract

Let E be a real, non-degenerate, indefinite inner product space with dim $E \geq 3$. It is shown that any bijection of E which preserves the light cones is an affine map.

Keywords

References

  1. Rev. Roum. Math. Pures et Appl. v.34 Zeeman’s theorem in Krein spaces T. Balan
  2. Indefinite inner product spaces J. Bognar
  3. Commun. Math. Phys. v.28 The structure of spacetime H. J. Borchers;G. C. Hegerfeldt
  4. Intern J. Theoretical Phys v.19 Elementary proof of Zeeman’s Theorem A. J. Briginshaw
  5. An. Univ. Craiova v.18 On the isometric theory of nondecomposabl A. Duma
  6. Amer. J. Math v.103 Lorentz transformations of a Hilbert space W. F. Pfeffer
  7. J. Math. Phys v.5 Causality implies the Lorentz group E. C. Zeeman