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ZEEMAN’S THEOREM IN
NONDECOMPOSABLE SPACES

ADRIAN DuMA

ABSTRACT. Let E be a real, non-degenerate, indefinite inner prod-
uct space with dim E > 3. It is shown that any bijection of £ which
preserves the light cones is an affine map.

0. Introduction

The aim of this paper is to obtain the famous E. C. Zeeman’s theo-
rem: “Causality implies the Lorentz group” in the most general frame,
namely, that of a real, non-degenerate, indefinite inner product space
with dimension greater than three (but not necessarily decomposable!).
We shall give two proofs of this result. Before proceeding to the state-
ment of our general theorem, we shall give an outline of some previous
generalizations of the Zeeman’s theorem.

0.1. Let M4 denote Minkowskian space-time, well-known as the
real 4-dimensional “continuum” of special relativity. The indefinite
quadratic form

(*) t2 . z:f . y2 . 22

on My, naturally gives rise to a causal relation, i.e. a relation of prece-
dence, which in the mathematical sense simply is a partial order be-
tween events.

We note by K the causal group and by L the group generated by
Lorentz transformations (isometries), translations and homotheties. In
1964, E. C. Zeeman published the surprising result (see [7]) that K =
L. Actually, according to the paper of W. F. Pfeffer [6], this result
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was also obtained by V. Knichal (in 1962, unpublished). The physical
interpretation of Zeeman’s theorem is the following : if the light cones
of the quadratic form (*) are preserved, then the general causality
principle can be established by checking the causality only once, either
for a photon or for a heavy particle.

0.2. Another proof of Zeemar's theorem in its initial form was
given by A. J. Briginshaw [4], who showed that the nonaffine conformal
transformations of compactified M, are necessarily global causality vi-
olators. In 1972 Zeeman’s theorem was extended to R x R™ with n > 2
by H. J. Borchers and G. C. Hegerfeldt (see [3]). using geometrical
arguments.

If n = 1, then the general causal automorphism would map the
space and time axes into curved lines, as is shown by the following

ExaMPLE. (E. C. Zeeman [7]) Let M, denote two-dimensional
Minkowski space with characteristic quadratic form
Qle) =2 —a? | e = (t,) & M.
Choose new coordinates

s=t—ux, =14+ x.

Let f,g : R — R be two arbitrary nonlinear orientation-preserving
homeomorphisms of the real line onto itself. Define h : My — M, by

h(s,y) = (f(s).9(¥)).

Then h is a nonlinear causal automorphism.

0.3. In 1980 Zeeman’s theorem was obtained by W. F. Pfeffer [6] in
the very general frame of a real Hilbert space, as follows:

THEOREM. Let H be a real Hilbert space with dim H > 3 and let
(..,.) : Hx H — R be a symmetric, continuous, nonsingular, bilinear
form in H, for which the associated Gram operator is surjective. Then
each bijection f : H — H, which preserves the null vectors relative
to (.,.), is an affine map.
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REMARK 0.4. Actually, W. F. Pfeffer [6] omitted in the formulation
of the theorem the assumption that the Gram operator is surjective.
The following example, which disproves a claim of W. F. Pfeffer [6
Proposition 1.2.], was given by T. Bélan [1].

bl

EXAMPLE. In the real Hilbert space L?([~1, !]), using the function
a:[-1,1] — R expressed by

—exp(r + 1/x) if xe€[-1,0)
a(x) = 0 if =0
exp(z — 1/) if =€ (0,1],

we may construct the symmetric, continuous, nonsingular, bilinear
form (.,.) : L*([-1,1]) x L?([~1.1]) — R by the formula

+1
(f.g) = / o) f (2)g(x)dr

-1

Then we may see that the corresponding Gram operator is not surjec-
tive.

1. Generalizing Zeeman’s theorem along W. F. Pfeffer’s
lines

1.1. It is our object in the present paper to sharpen and extend the
above theorem for a significantly wider class of inner product spaces.
In this section our discussion has been very much influenced by W. F.
Pfeffer’s paper [6].

First, let us recall that an inner product on a real vector space E is
a symmetric bilinear mapping (...) : E x E — R. The pair (E,(.,.))
is called a real inner product space (see J. Bognar [2]). If for every
nonzero element z € E there exists y € E such that (x,y) # 0, we
say that (E,(.,.)) is non-degenerate. If E contains positive as well as
negative elements, we say that (F,(.,.)) is an indefinite inner product
space.

DEFINITION 1.2. Let (E,(.,.})) be an arbitrary inner product space.
We say that the bijection f : F -— F is a neutral automorphism if we
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have (z —y, » —y) = 0iff (f(z) - f(y), f(z) = f(y)) = 0. The set of
all neutral automorphisms is denoted by K. If in addition f(0) = 0 we
say that f is a centered neutral automorphism (briefly, CNA) and we
note the set of all such automorphisms by Kj.

DEFINITION 1.3. We say that N C E is a neutral set if a) 0 € N
and b) (r —y, # —y) =0 for all z.y € N. The family of all maximal
neutral sets will be noted by M. If the neutral set V is a linear subspace
of E, we say that V' is a neutral subspace.

1.4. The formulation of our result is as follows:

THEOREM. Let (E,(.,.)) be a real non-degenerate indefinite inner
product space with dim £ > 3. If f € K, then f i« an affine transfor-
mation of E, for which there exists ¢ € R* such that

(flx) = f(y), flx) = fly)) =clz—y, x—y)

forallx,y € E.

1.5. a) One feature of our discussion which distinguishes it from that
given by W. F. Pfeffer [6] is the avoidance of assumptions in Theorem
1.4. on the decomposability of the space E (according to J. Bognar
[2, Theorem IV. 5.2.], if the inner product space £ admits a Hilbert
majorant, then E is decomposable).

b) In order to prove Theorem 1.4., we need the following result of J.
Bognar (2, Theorem I1.6.3.], concerning the mutual behaviour of two
inner products (.,.) and (.,.); defined on the same vector space E.

THEOREM. If (x,x) = 0 implies (x,x); = 0, then for some real
number a we have

(m’y)l :(I(fL‘,y) (:I:vyEE)

c¢) Let us remark that, if f € K and y € E, then the mapping
g: E — FE, expressed by

glz) = flz+y) - /(y) (z € E)

is a CNA.
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THEOREM 1.6. Let (E,(.,.)) be a real, non-degenerate inner prod-
uct space and let F be a neutral subspace of E. Suppose that F = F+1
Then we have

F=n{NeM,; FCN}.

Proof of Theorem 1.6. It suffices to show that, given N € M with
N D F and e € N\F, there exists N, € M such that F C Ny and
[ ¢ Nl.

F* being weakly closed, there is a weak neighborhood (see J. Bognar
2, p. 60]) U of e such that U N F = @. Then there exist ¢ > 0 and a
finite set G C E such that

{reE; |(gr—e)| <e forall ge G} CU.
Let us introduce the seminorm p, expressed by
=ma i c k).
ply) = max|(g,y)| (y € E)
We also introduce the seminorm ¢, defined by

q(y) = Iig;f;p(y -~ ) (ye E).

Then we have q(e) > ¢ and, using the Hahn-Banach theorem, we obtain
a linear functional ¢ such that

ple) =¢
lp(T)] < gq(x) (r € E).

Since g(y) < p(y) (y € E), it follows that ¢ is weakly continuous,
hence there is a z € E such that

e(y) = (y,2) (ye E).

Now, z € F implies that q(x) = 0, thus ¢(z) = 0 and therefore z € F*.
On the other hand, we have (e, z) = ¢ > 0. Setting

=z 5(z’~),06,
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where ¢; ; is the Kronecker’s delta, we obtain

(z7.27) # 0
* e };vJ_ :
(z%,e: > 0.

Then we may define the isometric bijection f: F -— E by
flx) =z —2(z* )" Yo, 2%)2* (r € E).

Let us remark that f? = idg.

We define Ny = f(N). Since N € M, it follows that N} € M. Since
e is neutral, we obtain (e, f(e)) # 0. It follows that f(e) ¢ N, whence
e = f(f(e)) ¢ Ni. Now, if z € F, then we have (r,e) = 0, (r,2) =0
and therefore (x,2*) = 0. It follows that f(z) = z(x € F), thus
f(F) = F. We obtain that F C Nj. 0

1.7. In what follows we note by Lin A the linear span of the subset
A of a linear space.

PROPOSITION. If (F,(.,.)) is a real non-degencrate inner product
space, then for each finite neutral set N and f € h)y we have

f(Lin N) == Lin f(N)

(see W. F. Pfeffer [6, Proposition 3.6.]).

COROLLARY 1.8. Let (E,(.,.)) be a real non-degenerate inner prod-
uct space, e € E with (e,e) = 0 and f € Ky. Then f preserves the
colinearity with e, i.e. for each a € R there exists b € R such that
f(ae) = bf(e).

(see W. F. Pfeffer [6, Corollary 3.7.]).

LEMMA 1.9. Let E.(.,.)) be a real non-degenerate inner product
space, e € E with (e,e) = 0 and f € Ko. Then (e,x) = 0 iff

(fle), f(z)) =
(see W. F. Pf@ffer (6, Lemma 4.1.]).
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DEFINITION 1.10. The inner product space (E,(.,.)) is called an
event space (the term “scalar event world” is also used) if E = R x H,
where (H, < ... >) is a real pre-Hilbert space with dim H > 2 and

(t2),(83y) = ts— < z,y >
for all (¢;z) and (s;y) in E.

LEMMA 1.11. Let (E,(.,.)) be a real, indefinite, non-degenerate
inner product space withdim £ >» 3, e € E with (e,e) <0and F = e+.
Then

a) E=F& Line
b) F is non-degenerate
c) If (E,—(.,.)) is not an event space, then
c1) F is indefinite and
cz) if f € Ko,z € E and (f(z), f(z)) < 0, then f preserves
the colinearity with x

(see W. F. Pfeffer [6, Lemma 4.2. and Proposition 4.3.]).

PROPOSITION 1.12. Suppose that (E,(.,.)) and (E, —(.,.)) are not
event spaces and that dim E > 3. Then each CNA of E preserves the
colinearity with every x € E.

(see W. F. Pfeffer [6, Corollary 4.4.)).

1.13. Using Lemma 1.11 c) and Lemma 1.9 we obtain the following

PROPOSITION. Let (E,(.,.)) be an event space, e € E and f € K.
Then (e, e) < 0 implies that (f(e), f(e)) < 0.

COROLLARY 1.14. The CNAs of the event spaces preserve the col-
inearity with any negative vector.

LEMMA 1.15. Let f be a CNA of the event space (E, (., .)). Suppose
that x,y € E are such that

(z,7) <0, (y,y) <0 and (z—y, z—y) <0O.
Then for all a,b in R there exist a, 3 € R such that

flaz +by) = af(x) + Bf(y)

(this follows from the above Corollary).
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LEMMA 1.16. Let F' be a two-dimensional subspace of the event
space (E, (.,.)). Then F has a basis {z, y} such that (z,7) <0, (y,y) <
0and (z —y,z—y) <O0.

(see W. F. Pfeffer |6, Lemma 4.9)).

LEMMA 1.7. Let f be a CNA of the event space (E,(.,.)). If v,y €
E are such that (r —y,r —y) <0, then (f(z)— f(y), f(z) - f(y)) < 0.
(this follows from the Proposition !.13 and Remark 1.5 c)).

THEOREM 1.18. Let f be a CNA of the event space (E,(.,.)) and
let F' be a 1-dimensional subspace of E. Then f(F) is a 1-dimensional
subspace, too.

(see W. F. Pfeffer [6, Theorem 4.13]).

1.19. Now, Proposition 1.12 and Theorem .18 imply that, if
(E,(.,.)) is a real, non-degenerate, indefinite inner product space with
dim E > 3 and f € Ky, then f preserves the colinearity with all the
vectors of F.

Using the fact that in the conditions of the above theorem the im-
age of every line is also a line, and the fundamental theorem of the
projective geometry, we obtain:

THEOREM. If (E,(.,.)) is a real, non-degenerate, indefinite inner
product space with dim E > 3 and f € Ky, then f is a linear transfor-
mation of E (and, consequently, each f € K is affine).

Our main result (Theorem 1.4. is an immediate consequence of
Theorems 1.5 b) and 1.19.

2. Short proof of Zeeman’s theorem

In this section we shall give an alternative proof of Theorem 1.4. In
this new proof, instead of using neutral sets as above (as was done in
W. F. Pfeffer [6]), we shall use sornewhat more natural properties of
indefinite inner product spaces.

In what follows we assume in addition that F is non-decomposable
and that f is a CNA of E. We are going to prove that f is linear and
there is a ¢ € R* such that

(f(:T), f(l/)) = C(.’L‘,y:] (Tv'l/ € E)
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Our proof is divided into four steps :

2.1. f preserves the colinearity with any neutral vector

Suppose that there is a neutral e € F and a € R such that f(ae) ¢
Lin f(e). Clearly, e # 0. Put u = f(ae) and v = f(e). Then u and
v are neutral orthogonal vectors and v # 0. E being non-degenerate,
there exists y € E such that (v,y) # 0. Then we have u # cv, where
¢ = (v,y)"'(u,y). Since E is non-degenerate, there is z € E such that
(u—cv,2) # 0. Let us define

w=z - (v,y)" (v, 2)y.

Then we have w L v and (w,u) # 0. Let F = Lin {u,v,w,y}. We
claim that F' is non-degenerate. Indeed, let h € F N F+. Then there
exist «, 3,7, 6, € R such that

h = au+ 5v + yw + by.

Since h L u, it follows that vy(w,u) + 6(y,u) = 0.

Since h L v, it follows that 6(y.v) = 0, thus é == 0 and, consequently,
v =0, hence h = au + Bv. Since h L w, it follows that a(u,w) = 0,
thus a = 0. Therefore h3v. Since h L y, we obtain B(v,y) = 0, thus
[ = 0. This proves our claim.

Being also finite-dimensional, F' is ortho-complemented. Let P :
E — F be the ortho-projector onto F. Suppose that F'1 is definite,
say positive. Since E is nondecomposable, it cannot be quasi-positive,
therefore we may choose a 5-dimensional negative definite subspace
H C E. Then P|g is one-to-one, whence dim ' > 5, contradiction.
The case when F* is negative definite is similar. It follows that FL is
indefinite. Let us choose r € F* with (r,7) = —(w,w) and let us note
"= w + 7. Then 7 is neutral, ¢+ 1 v and (¢,u) # 0. Since f~! is CNA,
we obtain f71(t) L e and (f~1(4),ae) # 0, contradiction. It follows
that there is b € R such that f(ae) = bf(e).

2.2. f preserves the colinearity with any non-neutral vector
Let a € R* and e € E with (e,e¢) # 0. Let u = f(ae),v = f(e) and

w=u~—(v,v) (u,v)v
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(since f is CNA, we have (v,v) # 0). Clearly, w L v. Let us take a

neutral ¢ in v=.

Suppose that (f~1(q),e) # 0. Let us define

@ = 57 (@) (ere).
Using the first stage of our proof, we obtain a b* € R such that
fla*f @) =bq.
Then e — a*f~1(q) is neutral and consequently
(fle) —b%q, fle) —b"q) =0.

Therefore we have (f(e), f(e)) = 0, hence (e, e) = 0, contradiction.
Then f~1(g) L e, thus f71(q) L ae. Suppose that (g,u) # 0. Let
a** = 1(u,q)"!(u,u). Using the first step for f~! we obtain a b** in
R such that
f—l(a**q) —. b**f_l(Q).

Then u — a**q is neutral, hence
q

(ae — b™ f7(q), ae — b™* f~}(q)) = 0,

therefore a?(e,e) = 0, thus (e, e) = 0, contradictior..

Then we have ¢ 1 u, whence ¢ L w. Since E is non-decomposable,
it follows that v is indefinite.

Since we have w L p for all neutral p in v+, it follows that w L v+,
Since w L v and E = Lin v @ v*, we obtain w L F, hence w = 0. It
follows that f(ae) = bf(e) for some b in R.

2.3. f maps lines onto lines

Let D C E be a line and z,y € D, x # y. Let D' be the line
generated by f(z) and f(y) and let z € D. Then there is a € R such
that z = (1 —a)r +ay, hence z—z = a(y—z). We define f, : E — E
by fz(u) = f(x +u) — f(x). Then f, is a CNA. Then thereisa b€ R
such that

fo(z = 2) = bfe(y — 2),
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thus
f(z) = f(z) = b[f(y) — f(z)],

whence

fz)=(1-b)f(x) +bf(y) € D"

It follows that f(D) € D’. By a similar argument we get f~1(D’) C
D, whence f(D) 2 D'. It follows that f(D) == D’. Using now the
fundamental theorem of the projective geometry, we obtain that f is
linear.

2.4. There exists c € R* such that (f(z), f(y)) = ¢(z,y) (v,y €
E)

Let us remark that the formula

(z,9)1 = (f(=), f())

defines a new inner product on E. Since (z,z) = 0 implies (z,z); =0,
by Theorem 1.5 b) we obtain a ¢ € R such that

(-T,y)l ZC(:I:vy) VT,yEl:

Suppose that ¢ = 0. Then we have (f(z), f(z)) =0 Vz € E. Since
f is CNA, it follows that (z,z) = 0 Vz € F, thus E is degenerate,
contradiction. In conclusion ¢ € R*.

Appendix

Let E and F be two real, non-degenerate, indefinite inner product
spaces. ITrying more to extend the Zeeman’s Theorem, it is natural to
raise the following related

PROBLEM. Suppose that there exists a one-to-one mapping f :
E — F such that (z —y,z—y) = 0 iff (f(z) - f(y), f() — f()) = 0.
Is there a linear isometric operator from E to F ?

Unfortunately, the following example shows that the answer is neg-
ative.
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EXAMPLE. Let E be the real G W. Mackey’s space (see J. Bognar
[2, Example I. 11.3]) and let F be a real linear space with

Dim F' = card (M x {0,1})
(here “Dim” means algebraic dimension). Let
{bz:; x€ E, 1€{0,1}}
be a Hamel basis for F'. Let us define the inner product
(,.):Fx F— R,
expressed by

(bm.ia by,j) = 7.7 SgTL(.'E YT y) + IZ o llér,u

(r,ye E; i,j€{0,1}).

Then it is easy to see that (F' (., .)) is indefinite and non-degenerate.
Clearly, (F,(.,.)) admits a normed majorant, defined by the norm
llu]l = > |u(z,4)] and the mapping

T — €y (x € E)

satisfies the Zeeman’s condition. But, according to J. Bognar [2, Ex-
ample III. 3.2.], E cannot have a normed majorant, so that E cannot
be (isometrically) isomorphic to any subspace of F.
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