CIRCULAR DISTORTION AND THE DOUBLE DISK PROPERTY OF CURVES

  • Kim, Ki-Won (Department of Mathematics Pusan Womens University )
  • Published : 1997.02.01

Abstract

Suppose that D is a domain in the extended complex plane $\overline{C} = C \cup {\infty}$. For each $z_0 \in C$ and $C < r < \infty$, we let $B(z_0, r) = {z \in C : $\mid$z - z_0$\mid$ < r}$ and $S(z_0, r) = \partial B(z_0, r)$. For non-empty sets A, $B \subset \overling{C}$, diam (A) is the diameter of A and d(A, B) is the distance of A and B.

Keywords

References

  1. Acta Math. v.109 Quasiconformal reflections L. V. Ahlfors
  2. Characteristic Properties of Quasidisks F. W. Gehring
  3. Math. Scand. v.65 The quasihyperbolic metric in John doamins F. W. Gehring;K. Hag;O. Martio
  4. Ann. Acad. Sci. Fenn. Ser. A I Math. v.14 Circular distortion of curves and quasicircles F. W. Gehring;C. Pommerenke
  5. Adv. in Math. v.46 Boundary behavior of harmonic functions in non-tangentially accessible domain D. S. Jerison;C. E. Kenig
  6. Properties of John disks, University of Michigan Ph.D. Thesis K. K. Ryu
  7. Rev. Roumaine Math. Pures Appl. v.32 Eine geometrische Eigenschaft quasikonformer Kreise R. Kunau
  8. Quasiconformal mappings in the plane O. Lehto;K. Virtanen
  9. Ann. Acad. Sci. Fenn. Ser. A I Math. v.4 Injectivity theorems in plane and space O. Martio;J. Sarvas
  10. Exposition. Math. v.9 John disks R. Nakki;J. Vaisala