On $\delta$ -semiclassical orthogonal polynomials

  • K. H. Kwon (Department of Mathematics KAIST, Taejon 305-701) ;
  • Lee, D. W. (Department of Mathematics KAIST, Taejon 305-701) ;
  • Park, S. B. (Department of Mathematics Korea Military Academy, Seoul 139-799)
  • Published : 1997.02.01

Abstract

Consider an oparator equation of the form : $$ (1.1) H[y](x) = \alpha(x)\delta^2 y(x) + \beta(x)\delta y(x) = \lambda_n y(x), $$ where $\alphs(x)$ and $\beta(x)$ are polynomials of degree at most two and one respectively, $\lambda_n$ is the eigenvalue parameter, and $\delta$ is Hahn's operator $$ (1.2) \delta f(x) = \frac{(q - 1)x + \omega}{f(qx + \omega) - f(x)}, $$ for real constants $q(\neq \pm 1)$ and $\omega$.

Keywords

References

  1. SIAM J. Math. Anal. v.3 Another characterization of classical orthogonal polynomials W.A. Al-Salam;T.S. Chihara
  2. An Introduction to Orthogonal Polynomials T.S. Chihara
  3. J. Comp. Appl. Math. v.57 A distributional study of discrete classical orthogonal polynomials A. G. Garcia;F. Marcellan;L. Salto
  4. Math. Nachr. v.2 Uber Orthogonalpolynome, die q-Differenzengleichungen genugen W. Hahn
  5. J. Approx. Th. New characterizations of discrete classical orthogonal polynomials K. H. Kwon;D. W. Lee;S. B. Park
  6. J. Diff. Eqs. Appl. Discrete classical orthogonal polynomials K. H. Kwon;D. W. Lee;S. B. Park;B. H. Yoo
  7. Hahn class orthogonal polynomials K. H. Kwon;D. W. Lee;S. B. Park;B. H. Yoo
  8. Indag. Math. N.S. v.7 New characterizations of classical orthogonal polynomials K. H. Kwon;L. L. Littlejohn;B. H. Yoo
  9. On semi-classical orthogonal polynomials K. H . Kwon;S. B. Park
  10. Publ. Labo. Anal. Num. 85041 Introduction aeude des δ-polynomes orthogonaux semi-classiques P. Maroni
  11. Ⅲ Simposium sobre Polinomios orthogonales y applications Aussi dans Actas P. Maroni;F. marcellan(ed.)
  12. Ann. Mat. Pura Appl. v.149 Prolegomenes a letude des polynomes orthogonaux semi-classiques P. Maroni
  13. IMACS Annals on computing and Applied Mathematics v.9 Une theorie algebrique des polynomes orthogonaux. Application aux polynomes orthogonaux semi-classiques, In "Orthogonal Polynomials and their applications P. Maroni;C. Brenzinski(Ed.);L. Gori(Ed.);A. Ronveaux(Ed.);J.C. Baltzer AG(Ed.)
  14. J. Comp. Appl. Math. v.48 Variations around classical orthogonal polynomials. Conneted problems P. Maroni
  15. J. Approx. Th. v.46 Discrete semi-classical orthogonal polynomials : Generalized Meixner A. Ronveaux