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ON §-SEMICLASSICAL ORTHOGONAL POLYNOMIALS

K. H. KwoN, D. W. LEE, AND S. B. PARK

1. Introduction

Consider an operator equation of the form :

(1.1) H[y)(z) = a(z)8y(z) + B(z)dy(z) = Any(z),

where a(z) and S(x) are polynomials of degree at most two and one
respectively, A, is the eigenvalue parameter, and § is Hahn’s operator
defined by

(12) () = L 2 S0)

for real constants q (# +1) and w. Hahn [4] showed that for an orthog-
onal polynomial system {P,(z)}2, the followings are all equivalent
(see also [7]):

(1) {0P,(x)}52, is also an orthogonal polynomial system.

(2) For n > 0, {P,(z)}3, satisfies an operator equation of the
form (1.1).

(3) There is a polynomial ap(z) and a function w(z) such that

(1L3)  Pula) = (@) 0" [ao(@)er(2) - an(p)u(z)], n >0,
where a;(z) = ai41(gz +w) for i = 0,1, -- ,n — 1.
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(4) There is a rational function Q(z,%) such that

am— qn—]. qi—l
g—1 g-1

>, n>0 and 0<i<n,
Ani-1

n .
where P,(z) = ) a, ;2"
i=0

(5) The moments {o,}52, with respect to which {P,(z)}, is
orthogonal satisfy a recurrence relation of the form

a + bg"
= On_
c+dgqr "

(1.5) Lo on>1,

where a, b, ¢, d are constants with ad — be 54 0.
In [7], it is shown that the condition (1) can be relaxed as :
(6) For any fixed integer 7 > 1, {67 P, ()}, is a weak orthogonal
polynomial system (see Definition 2.1).
We call any orthogonal polynomial system { P, (z)}2., a Hahn class or-
thogonal polynomial system if {P,(z)}52, satisfy any one of the above
six equivalent conditions.

In this work, we study the so called §-semiclassical orthogonal poly-
nomials (see Definition 3.1), which was first introduced in [10]. In
particular, we give new characterizations of §-semiclassical orthogonal
polynomials using higher order structure relations. These generalize
some of previous results for 6 = d/dz ([1,8,9]) or for § = A, the forward
difference operator ([3,5,6,14)).

2. Preliminaries

All polynomials in this work are assumed to be real polynomials in
one variable and we let P be the space of all real polynomials. We
denote the degree of a polynomial 7(x) by deg(n) with the convention
that deg(0) = —1. By a polynomial system(PS), we mean a sequence
of polynomials {¢,(z)}>2, with deg(¢,) = n, n > 0. Note that a PS
forms a basis of P.
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We call any linear functional o on P a moment functional and denote
its action on a polynomial 7(z) by (o, 7). For a moment functional o,
we call

On = {o,z2"), n=0,1,--

the moments of 0. We say that a moment functional ¢ is quasi-definite
if its moments {0, }22 ; satisfy the Hamburger condition

(2.1) Ap(o) = det[o; )7 ;o0 # C

for every n > 0. Any PS {¢,,(z)}32, determines a moment functional
o (uniquely up to a non-zero constant multiple), called a canonical
moment functional of {¢,(z)}2,, by the conditions

(0,00 #0 and (o,¢,) =0, n>1.

DEFINITION 2.1. We call a PS {P,(z)}2, a weak orthogonal poly-
nomial system (WOPS) (respectively, an orthogonal polynomial system
(OPS)) if there is a non-zero moment functional o such that

(2.2) (0, PnPp) = Kpbmn  (m and n > 0),

where K, are real (respectively, non-zero real) constants. In this case,
we say that {P,(x)}5%, is a WOPS or an OPS relative to o and call o
an orthogonalizing moment functional of { P, (x)}32 .

It is immediate from (2.2) that for any WOPS {P,(z)}5°,, its or-
thogonalizing moment functional ¢ must be a canonical moment func-
tional of {P,(z)}%,. It is well known (see Chapter 1 in Chihara [2])
that a moment functional ¢ is quasi-definite if and only if there is an
OPS relative to o.

Throughout the paper, we use the following notations :

R AT 1
(0] := 0, and  [n]i={ @ 147
n if g=1

for any real number ¢ and any integer n > 0. Furthermore, we use
factorial notations as

=1 and [l = [n]ln—1]---[1], n>1
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We call systems {¢n,(2)}32, and {¢n(z)}22, defined inductively by

¢o(z) =1, ¢n(z) =dn-1(z)(z~[n—1w), n>1,
and 3
¢o(z) =1, én(z) = pn_1(z)(z — [n]w), n>1,
the factorial polynomials.

LEMMA 2.1. We have

(i) é"z" =[n]!, n>1 3 )

(ii) 6¢n( ) = [n]pn-1(x ) d¢n(z) = [n]ﬁbn—}(ﬂ’); n > 1.
(iii) ¢n( (x —w)) = n¢n( )y Gnt1(z) = 2¢n(z), n>0.
(iv) $¢n( ) = Pnti(z )+w[n]¢n(x) n>0.

(v) q;n(x) = ¢n(x)+k¥( nH"- kil k]v w™” k¢k( ), n>0.
Proof. The proofs are straightforward. 0O

For a moment functional ¢ and a polynomial ¢(x), we let *é o, ¢o,
14,40 and T, 10 be the moment functionals defined by

<¢U: ¢> - <01 4’1/)), <+6U’1/)> - —(09 5w>1
(Tgw0, %) = (0, Ty () = (0,%(gz + w)),

Ty, ) = (0, T21 () = <a,w<§<m —w)  (WeP).

Then the followings are easy consequences of definitions.

LEMMA 2.2. Let ¢ be a quasi-definite moment functional and
{Pn(2)}32o an OPS relative to 0. Then we have
(i) for any polynomial ¢(z), ¢(x)o = 0 if and only if ¢(z) = 0
(ii) for any moment functional T and any integer k > 0, (1, P,) =0
for n > k if and only if T = ¢(x)o for some polynomial y(z) of
degree < k.
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PROPOSITION 2.3. Let o be a moment functional. Then we have
(i) 6o =0ifand only ifoc =0 ;
(ii) (Leibniz’s rule) for any polynomial ¢(x) and 3 (z),

(2.3) 6(d(x)¥(x)) = dlgz +w)dy(z) + P(z)dg(z);
(iii) for any polynomial ¢(z),

(2.4) Tyw®0=a80(T,08),  8(Toud) = ¢Tyu(56);
(iv) for any polynomial ¢(z),

(2.5) P0(@0) =Ty ¢ 00 +8(Ty 50)o = ¢ 80 + Ty (5¢0).
Proof. (i) It immediately follows from the relations

(9,6n(x)) = (o, 6(Gnt1(2))) = —

1
[+ 1] [n+4 1] (T60,¢nt1(z)) =0, n > 0.
(ii) For any polynomials ¢(z) and ¥(z), we have

gz + w)Y(gz + w) — ¢(x)Y(z)

S(w(z)d(x)) =

(g—Dz+w
_ ¢lgz + w)(d(gz + w) — Y(x)) n Y(z)(p(gz + w) — ¢(x))
(- Dz +w (g—Dz+w

= ¢(gz + w)éy(z) + Y(x)dd(x).

(ili) It comes easily from the definition of Hahn’s operator.
(iv) For any polynomial ¥(z), we have by (ii)

(T8(¢0), ¥) = {0, ¢(2)d¢())

= 0,800 (= w)(a)) ~ V() (& — w)
= (62 (e = w)) "8+ 09( (o ~ w))o ).
On the other hand, we have via (ii) for any polynomial ¥(z),
(*6(d0),¥) = ~(0,8(p(x)¥(2)) — ¥(qz + w)dep(x))
= (8(z) 60 + T, (80(z)a), ¢ ().
Hence, we obtain (2.5). 0O
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3. Main results

The theory of semiclassical OPS’s is well developed by many authors
[9,11,12,14] when § is the differential operator d/dz or the difference
operator A. We now consider é-semiclassical OPS’s, which are first
introduced by Maroni [10].

DEFINITION 3.1. ([10]) A quasi-definite moment functional o is called
d-semiclassical if there is a pair of polynomials (a(z). 3(z)) # (0, 0) such
that

(3.1) "d(ao) = fo.
For any é-semiclassical moment functional o, we call
s := min{max(deg(«) — 2, deg(3) — 1)}

the class number of o, where the minimum is taken over all pairs of
polynomials (a,3) # (0,0) satisfying the equation (3.1). In this case,
we call o a é-semiclassical moment functional of class s and its cor-
responding OPS {P,(z)}2, is called a é-semiclassical OPS of class
s.

PROPOSITION 3.1. If 0 is a é-semiclassical moment functional sat-
isfying the equation (3.1), then deg(a) > 0 and deg(3) > 1 so that the
class number s is non-negative.

Proof. Suppose that o(x) = 0. Then So = 'S(ac) = 0 so that
B(x) = 0 since o is quasi-definite. It contradicts to (a, 3) # (0,0).
Assume that 8(z) = 0. Then "§(ao) = 0 so that @0 = 0 and so a(z) =
0 which contradicts to («, 8) # (0,0). If B(z) = c(5£ 0), then c(o,1) =
(Bo,1) = ("6(a0),1) = —(ac,6(1)) = 0, which also contradicts to
quasi-definiteness of 0. O

LEMMA 3.2, (cf.[5,8,13]) Let o be a d-semiclassical moment func-
tional satisfying

“O(pro) = Yo (sp:=max(t; —2,p; — 1))
To(pa0) = Yoo (82 := max(ta — 2, pa — 1) ),
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where t; = deg(¢;) and p; = deg(v;), 7 = 1,2. Let ¢(z) be a com-
mon factor of ¢1(z) and ¢o(z) of the highest degree. Then, there is a
polynomial y(x) such that

t6(go) = o,

where s := max(deg(¢) — 2, deg(v') — 1) = 51 — ¢; + deg(p) = so — tp +
deg(¢).

_ Proof. We may assume that ¢; = é1¢ and Py = (f)zqﬁ, where ¢; and
¢2 have no common factor except real constants. From the equation

(3.2), we have
(33) ( q, w¢1) (¢ ) = (’l/}l - ¢5( *1 b )0-3
(34) ( q,w ¢2) ( ) ('d}? '“ ¢6( q, w ) g.

Multiplying (3.3) by Tq_,iqu and (3.4) by Tq_,fuq‘;l and then substracting
the two equations, we have

( q, w¢2)[¢1 ¢5( q, 1u¢1)] = [¢2 - ¢(5(T_7‘,})(]32)](T«11b§51)

Since ¢1 and ¢, have no common factor, T, QSl and T 1(252 also have
no non-constant common factor. Hence, 1/12 — pd( q,w¢2) and ; —

(T, L)) are divisible by T’ o L $2 and T, L1 respectively so that there
exists a polynomial ¥ such that

Y2 — $(T, 2) = (T, 562) and 1 — ¢8(T, Lé1) = W(T, L ).
From the equations (3.3) and (3.4), we have
(Ty.092)("8(60) = Yo) = 0 and (T, 61)(*d(¢0) — $o) = 0.
Since T, qfigﬁl and T~ L2 have no common factor. we have
"o(¢po) — Yo = 0.

Finally, the formula for s follows just by counting degrees of ¢(z) and

P(z). O
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PROPOSITION 3.3. (cf.[5,8]) Let o be a é-semiclassical moment func-
tional of class s satisfying the equation (3.1) with s = max(deg(¢) —
2,deg(y) — 1). If o satisfles the equation (3.1) with another pair of
polynomials (¢1,%1) # (0,0), then ¢;1(z) is divisible by ¢(x).

Proof. Let a(x) be a common factor of ¢(x) and ¢1(z) of the highest
degree. Then by Lemma 3.2, there is a polynomial 3(x) such that

"6(ao) = fBo

and sp := max(deg(a) — 2,deg(8) — 1) = s — deg(¢) + deg(a). Since
so > s, deg(a) > deg(¢) so that a(z) = cg(z) for some non-zero
constant c. Hence, ¢(z) must divide ¢;(z). O

COROLLARY 3.4. For any d-semiclassical moment functional o, the
pair of polynomials (a, 3) # (0,0) which realizes the class number of o
is unique up to a non-zero-constant multiple.

Proof. Assume that two pairs of polynomials (o, 3) # (0,0) and
(a1,B81) # (0,0) realize the class number of o. Then, by Proposition
3.3, a1(z) is divisible by a(z) and vice versa. Hence, a(z) = cay () for
some non-zero constant ¢. [

Maroni [10] have found several necessary and sufficient conditions
for a moment functional o to be §-semiclassical.

DEFINITION 3.2. A PS {P,(z)}32, is called to be quasi-orthogonal
of order k, & > 0 an integer, if there is a moment functional o such that

(6,PnPy =0, 0<m<n-—k

(35) (0,Pr_P.) #0, for somer > k.

In this case, we say that {P,(z)}22, is quasi-orthogonal of order k
relative to o.

We see that any PS {P,(z)}%2, is quasi-orthogonal of order 0 if and
only if it is a WOPS.
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THEOREM 3.5. Let {P,(z)}5%, be an OPS relative to o and
{Qn(2)}52g = {8(Pnt1())}>o. Then the followings are equivalent.
(i) o Is d-semiclassical ;
(ii) {Qn(2)}s, is quaSJ -orthogonal ;
(iii) There are integers s and t with 0 <t < s+ 2 and a polynomial

a(z) of degree t such that for n > s,

(3.6)
n+t

Z 0., ;Pj(z), and 6,,_s#0 forsome n > s.

j=n-s
Proof. See Theorem 3.1 in [10]. O

We call (3.6) a structure relation of order one for a §-semiclassical
OPS {P,(z)}52,.

PROPOSITION 3.6. Let {P,(z)}52, be an OPS relative to o.

(i) Ifo is a 6-semiclassical moment functional satisfying (3.1), then
for any integer r > 1, {6 P, ()}, is quasi-orthogonal of order
< rs relative to a" (z)o.

(ii) If {0" P,(x)}32, is quasi-orthogonal of order k for some integer
r > 1, then {P,(z)}52, is a é-semiclassical OPS of class <
k+2r—2.

Proof. See Theorem 4.2 and Theorem 4.4 in {10]. O

In particular, when r = 1, we obtain : {P,(z)}>2, is a é-semiclassical
OPS of class 0 if and only if {§P,(z)}3, is a WOPS. Therefore,
{Pn(z)}20 is a Hahn-class OPS if and only if {P,(x)}32, is a é-
semiclassical OPS of class 0 (see Section one).

We now give some new characterizations of §-semiclassical OPS’s.
First, we have:

THEOREM 3.7. Let o be a quasi-definite moment functional. Then
o is a §-semiclassical moment functional satisfying (3.1) if and only if

(3.7) (0, L{gle) = (0, 0L[Y]), (4(z) and y(z) € P)
where L[] := a(z)8°T, L + B(z)oT, 4.
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Proof. =) It can be easily shown that
1
Liglo = p *8{(6p)ac], ¢ e P.
Hence, for any polynomials ¢(z) and ¥ (z) we have

(o, L[¢ly) ==("8[(6¢)ac], ¢} = —(ao, 5¢d¢))

L¢]¢).

1
q
=—("8[(§¢)ac), ¢) = (o,

»-QI»—*»QI»—A

<) By choosing ¢(z) = 1, we have for any polynomial ¢(z) € P,

0= (o, L[1]) = (0, L[¢]) = (0, ad(T, %) + B6(T, 3 %))
= —<+(5((1(7) - /8 ad(Tq,'l};w>

Hence *§(ao)—fo = 0 since any polynomial can be written in the form

(T, w)(z). O

The equation (3.7) means that the operator oL|-] is formally sym-
metric on polynomials. We can also generalize Theorem 3.5 as :

THEOREM 3.8. Let {P,(2)}5>, be an OPS relative to 0. Then for
any integer r > 1, the followings are equivalent.
(i) {Pn(x)}22, is a é-semiclassical OPS.
(ii) There is an integer u(> r) and a polynomial 7-(x) of degreet > 0

such that
n—r-+t
(3.8) m(@)6"(Pa(2)) = > 6n;Pi(z), n>u
j=n—u

72



On §-semiclassical orthogonal polynomials

Proof. (i)= (ii) : Let o satisty "d(ac) = Bo for some polynomials
(o, B) # (0,0) with s := max (deg o — 2, deg 3 — 1) and deg a = k.
Then, we may write

n—r+rk

(3.9) (@) (Pu(@) = Y. 6u,Pi(a).
j =0

Multiplying both sides of (3.9) by P, (z), m=0,1,--- ,n—~7 —rs and
then applying o, we have

n—r+rk
971,m<(77 sz) = Z On.j {0, PmPj) = (o (z}0, Prd" (P,)) = 0,
=0

since {8" P, (x)}52, is quasi-orthogonal of order < rs relative to o (z)o
by Proposition 3.6 (i). Hence we have (3.8) with n(z) = o"(z), u =
r+rsandt=rk.
(ii)= (i) : Assume that (3.8) holds for some integer r > 1. Then for
0<m<n—u,
n—r+t
(70, Pnb™(Pa)) = Y 6n;(0, Py Py =0

ji=n-—-u

and so
(mo, (0" P )(0"P,)) =0 for0<m<n—u+r

Hence {6"P,(z)}32, is quasi-orthogonal of order < u — r relative to

m(z)o so that {P,(z)}32, is a d-semiclassical OPS of class < u+2r —2
by Proposition 2.6 (ii). [

We may call (3.8) a structure relation of order r for a d-semiclassical
OPS {P,(z)}523. When § = d/dz (that is, when ¢ — 1 and w = 0),
Theorem 3.8 is proved in [9].

On the other hand, Al-Salam and Chihara [1] proved : an OPS
{Pn ()}, is classical, i.e., a semiclassical OPS of class 0 if and only
if there is a polynomial 7(z) of degree > 0 such that

()P (z) = 1 Ppos1(2) + 85 Pplx) + to, P _1(z), n>1,

where r,,, s, ¢, are constants.
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LEMMA 3.9. Let {P,(x)}32, be an OPS relative to 0. Then for any
integer k > 0 and n > 0, we have
n-+k
(3.10) 2" Po(z) = Y Cp;Pi(x)
j=n—k
where Cy, 1k # 0 and Cy, j = 0 for j < 0 and

(3.11) Pryk(z) = me(z;n) Po(2) + ch+k,1 n—-j (),

=1
where 7 (x;n) is a polynomial of degree k with coefficients depending
onn and Cyyy ; =0 for j > n.

Proof. We may write z* P, (z) as z* P, (z) = Z;:: Chr,;Pj(z). Then
n+k
Coi(o, Py = (0, P> CnjP;) = (0,a*PP,) =0, k+1<n.
7=0
Hence C,,; = 0if I < n — k and (3.10) follows. (3.11) can be proved
easily for any fixed » > 0 by induction on k > 0 using the three term
recurrence relation satisfied by {P,(z)}2,. O

THEOREM 3.10. Let {P,(z)}%, be an OPS relative to ¢. Then for
any integer r > 1, the followings are equivalent.

(i) {Pn(2)}3, is a Hahn class OPS (i.e., a §-semiclassical OPS of
class 0).
(i) There is a polynomial w(x) of degree t > 0 such that

(3.12) 7(2)0"(Po(z)) = m—p(z;0) +Za P n>r,

where 7;_,(z;n) is a polynomial of degree t--r with coefficients
depending on n.
(iii) There is a polynomial m(z) of degree t with 0 < t < 2r such
that
n—r—+t
(3.13) w(@)0"(Pu(z)) = > 8,;Pi(z), n>r.

j=n—r
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Proof. The equivalence of (ii) and (iii) follows immediately from
Lemma 3.9.
(1)=>(iii) : It is a special case of Theorem 3.8.
(iii)=(i) : Assume that there is a polynomial m(z) of degree t > 0
satisfying (3.13). Then {6"P,(z)}S2, is quasi-orthogonal of order 0,
that is, {" P, (z)}52, is a WOPS (see the proof of Theorem 3.8). Hence,
{Pn(z)}52o must be a Hahn class OPS (see Section one). [

If o is a é-semiclassical moment functional satisfying (3.1), then for
any polynomial ¢(x), o also satisfies

T{(da +6(8)[(g — Dz +wja)o} = (¢8 - 6(¢)a)o

so that o satisfies infinitely many distinct equations of the form (3.1).
It is so natural to ask : How can we see whether the pair (o, 3), with
which o satisfies (3.1), gives the class number of o or not ?

LEMMA 3.11. Let o be a quasi-definite moment functional and sat-
isfy
(3.14) "6(ao) — Bo = w(z)["6(ar0) — Bro], weP.
Then, max(deg(a)—2, deg(8)—1) = deg(m)+max(deg(a;)—2 deg(8;)—
1).

Proof. By the direct calculation,
we have "d(ao) — fo = n(z)["6(a10) ~ Bro] if and only if

a(z) = n(gz +w)en (@), () = a1 (2)dn(z) + 7(2)f (2).

So we have deg(a) = deg(m)+ deg(a). If n(z) = ¢ (# 0), then a(z) =
cay(z) and B(x) = ¢f1(z) so that the conclusion is trivial. Assume that
deg(m) > 1. Then there are three cases ;

(a) deg(ar) — 2 > deg(B) — 1;
(b) deg(a) ~ 2 = deg(B) - 1;
(c) deg(a) — 2 < deg(8) — 1.
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(a): Since deg(ar)—2 > deg(8)—1, we have max(deg(a)—2, deg(8)—
1) = deg(a) — 2. On the other hand, by counting the degree of B(x) —
d(m)on(z) = w(z)F1(x) we have

deg(m01) = deg[B(z) — 6(m)a1] < max(deg(8), deg(d(r)) + deg(a1))
— max(deg(8), deg(a) — 1) = deg(a) - 1
so that deg(31) < deg(a;) — 1. Hence, we obtain
deg(rm) + max(deg(a) — 2, deg(:) — 1) =deg(m) + deg(ay) — 2
= deg(a) - 27

which is the required result. The proof for cases (b) and (c) is similar
to the above. [

LEMMA 3.12. ([12]) Let o and 7 be moment functionals and ¢ be an
arbitrary constant. Then (z — ¢)7 = o if and only if

(3.15) T =710+ (x —¢) " lo

where 1o = (7, 1) and ¢, is the dirac delta function at c.

THEOREM 3.13. (cf.[13]) Let ¢ be a é-semiclassical moment func-
tional satisfying (3.1) with s := max(deg(a) — 2, deg(8) — 1). Then o
is of class s if and only if for any root c of a(z),

el + [{o, Be)| # 0

where a(z) = (z—c)a.(z) and Blz)—6(—)ac(z) = (—2)B(x)
+7Te.

Proof. Let c be a root of a(z) and so a(z) = (z -- ¢)ac(z). Then

0= "d(a0) — Bo = *6[(z — c)a.(x)o] — Bo

L T-w—cq, (D)o x—W—anl:CU*/a
—(——"——q ) To( c())+5(—————q Ja.(z)o ~ 3
= (E_—_uqi—_cg) *8(ac(z)o) — [B(z) — 5(31c — l: — Cq)ac(x)]a.
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We set

T—w-—cq

R
LI
&

I

(

. . )Be(z) + 7.

Then (*==4)["0(ac(z)0) — Bc(x)o] = rco. By Lemma 3.12,

7= "8{ac(z)o) — Be(z)o = To0wteq + (- g

——— 7o
T —w—cq

and
To = <T; 1> = <+5(ac(7) — feo, 1> = _<Ua ﬂc)

Suppose that o is of class s but there is a root ¢ of a(z) such that r. = 0
and (o, 8:) = 0. Then 7 = "§(a.(z)o) — B.0 = 0, so that

—w—cq

0= *6(ac) — o = (£ )[*8(ceeo) ~ Beol.

By Lemma 3.11, s = 1+ max(dega, — 2, deg8. -- 1), so that s < s — 1.
It is a contradiction.

Conversely, suppose that o is of class § < s but r. # 0, {0,8.) # 0
for any root ¢ of a(z). Then there exists (& 8) # (0,0) such that
"o(ao) = Bo and s=max(dega — 2, deg — 1). By Proposition 3.3,
there is a polynomial m(x) with deg(m) > 1 such that a(z) = 7 (z)a(z).
Hence, from the equation (3.1) we have

fo = "§(ac) = Yé(n(z)ao) = (Tq_’jm) *8(ao) + 0(T, sm)ao
= (Tyum)B + 8(T, 4m)a)o
so that
Bla) = (Tyam)B + 6(T, Lm).
Let ¢ be a root of 7(x) and so (z — ¢) = m.(z). Then we have a.(x) =

77



K. H. Kwon, D. W. Lee, and S. B. Park

7e(z)a(z) and so

r—w-—cq

Bl@) = 8(———)ac(z)
= ( wwmwwmf;w»mm—ai—w Do (z)
T —w—cg —w, = T —w—cq r—w., .
= () + Jre(F=2))a(z)
—ﬂx“ﬁ‘”nammm
_a:—w—cqw:s w~x_ r—w qu:cda:
= (B - 5 r(@)ata)

r—w-—cq r—w-—cq T —w -

@I (=) + (=) ) aGe)
= () (2 3(2) + 6 (2 ()],

which implies r. = 0 and 8.(z) = 776(’;“’ )B(z) + 5(7rc(zj1w))d(3:). On
the other hand, we have

(0,8) = (o0, 1(E—2)B(2) + 6(me(E—2))ai(2)
= (B(z)o, m(Z=2)) = (*8(a0), me T2
=0,

which contradicts to r. # 0 and (g, 8.) # 0 for any root ¢ of a(z). O

Theorem 3.13 for § = d/dx was proved in [13].
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