ON δ-SEMICLASSICAL ORTHOGONAL POLYNOMIALS

K. H. KWON, D. W. LEE, AND S. B. PARK

1. Introduction

Consider an operator equation of the form:

(1.1)
$$H[y](x) = \alpha(x)\delta^2 y(x) + \beta(x)\delta y(x) = \lambda_n y(x),$$

where $\alpha(x)$ and $\beta(x)$ are polynomials of degree at most two and one respectively, λ_n is the eigenvalue parameter, and δ is Hahn's operator defined by

(1.2)
$$\delta f(x) = \frac{f(qx+w) - f(x)}{(q-1)x + w}$$

for real constants $q \neq \pm 1$ and w. Hahn [4] showed that for an orthogonal polynomial system $\{P_n(x)\}_{n=0}^{\infty}$ the followings are all equivalent (see also [7]):

- (1) $\{\delta P_n(x)\}_{n=1}^{\infty}$ is also an orthogonal polynomial system.
- (2) For $n \geq 0$, $\{P_n(x)\}_{n=0}^{\infty}$ satisfies an operator equation of the form (1.1).
- (3) There is a polynomial $\alpha_0(x)$ and a function w(x) such that

(1.3)
$$P_n(x) = [w(x)]^{-1} \delta^n [\alpha_0(x)\alpha_1(x)\cdots\alpha_n(x)w(x)], \quad n \ge 0,$$
where $\alpha_i(x) = \alpha_{i+1}(qx+w)$ for $i = 0, 1, \dots, n-1$.

Received August 1, 1996.

1991 AMS Subject Classification: 33C45, 33D20.

Key words and phrases: Hahn's operator, Hahn class orthogonal polynomials, δ -semiclassical moment functionals.

(4) There is a rational function Q(x, y) such that

$$(1.4) \qquad \frac{a_{n,i}}{a_{n,i-1}} = Q\bigg(\frac{q^n - 1}{q - 1}, \frac{q^i - 1}{q - 1}\bigg), \quad n \ge 0 \quad \text{and} \quad 0 \le i \le n,$$

where
$$P_n(x) = \sum_{i=0}^{n} a_{n,i} x^{i}$$
.

(5) The moments $\{\sigma_n\}_{n=0}^{\infty}$ with respect to which $\{P_n(x)\}_{n=0}^{\infty}$ is orthogonal satisfy a recurrence relation of the form

(1.5)
$$\sigma_n = \frac{a + bq^n}{c + dq^n} \, \sigma_{n-1}, \quad n \ge 1,$$

where a, b, c, d are constants with $ad - bc \neq 0$.

In [7], it is shown that the condition (1) can be relaxed as:

(6) For any fixed integer $r \ge 1$, $\{\delta^r P_n(x)\}_{n=r}^{\infty}$ is a weak orthogonal polynomial system (see Definition 2.1).

We call any orthogonal polynomial system $\{P_n(x)\}_{n=0}^{\infty}$ a Hahn class orthogonal polynomial system if $\{P_n(x)\}_{n=0}^{\infty}$ satisfy any one of the above six equivalent conditions.

In this work, we study the so called δ -semiclassical orthogonal polynomials (see Definition 3.1), which was first introduced in [10]. In particular, we give new characterizations of δ -semiclassical orthogonal polynomials using higher order structure relations. These generalize some of previous results for $\delta = d/dx$ ([1,8,9]) or for $\delta = \Delta$, the forward difference operator ([3,5,6,14]).

2. Preliminaries

All polynomials in this work are assumed to be real polynomials in one variable and we let \mathcal{P} be the space of all real polynomials. We denote the degree of a polynomial $\pi(x)$ by $\deg(\pi)$ with the convention that $\deg(0) = -1$. By a polynomial system(PS), we mean a sequence of polynomials $\{\phi_n(x)\}_{n=0}^{\infty}$ with $\deg(\phi_n) = n$, $n \geq 0$. Note that a PS forms a basis of \mathcal{P} .

We call any linear functional σ on \mathcal{P} a moment functional and denote its action on a polynomial $\pi(x)$ by $\langle \sigma, \pi \rangle$. For a moment functional σ , we call

$$\sigma_n := \langle \sigma, x^n \rangle, \quad n = 0, 1, \cdots$$

the moments of σ . We say that a moment functional σ is quasi-definite if its moments $\{\sigma_n\}_{n=0}^{\infty}$ satisfy the Hamburger condition

(2.1)
$$\Delta_n(\sigma) := \det[\sigma_{i+j}]_{i,j=0}^n \neq 0$$

for every $n \geq 0$. Any PS $\{\phi_n(x)\}_{n=0}^{\infty}$ determines a moment functional σ (uniquely up to a non-zero constant multiple), called a canonical moment functional of $\{\phi_n(x)\}_{n=0}^{\infty}$, by the conditions

$$\langle \sigma, \phi_0 \rangle \neq 0$$
 and $\langle \sigma, \phi_n \rangle = 0$, $n \geq 1$.

DEFINITION 2.1. We call a PS $\{P_n(x)\}_{n=0}^{\infty}$ a weak orthogonal polynomial system (WOPS) (respectively, an orthogonal polynomial system (OPS)) if there is a non-zero moment functional σ such that

(2.2)
$$\langle \sigma, P_m P_n \rangle = K_n \delta_{mn} \quad (m \text{ and } n \ge 0),$$

where K_n are real (respectively, non-zero real) constants. In this case, we say that $\{P_n(x)\}_{n=0}^{\infty}$ is a WOPS or an OPS relative to σ and call σ an orthogonalizing moment functional of $\{P_n(x)\}_{n=0}^{\infty}$.

It is immediate from (2.2) that for any WOPS $\{P_n(x)\}_{n=0}^{\infty}$, its orthogonalizing moment functional σ must be a canonical moment functional of $\{P_n(x)\}_{n=0}^{\infty}$. It is well known (see Chapter 1 in Chihara [2]) that a moment functional σ is quasi-definite if and only if there is an OPS relative to σ .

Throughout the paper, we use the following notations:

$$[0]:=0, \qquad ext{ and } \qquad [n]:=\left\{egin{array}{ll} rac{1-q^n}{1-q} & ext{if} & q
eq 1 \ n & ext{if} & q=1 \end{array}
ight.$$

for any real number q and any integer $n \geq 0$. Furthermore, we use factorial notations as

$$[0]! = 1$$
 and $[n]! := [n][n-1] \cdots [1], n > 1.$

We call systems $\{\phi_n(x)\}_{n=0}^{\infty}$ and $\{\tilde{\phi}_n(x)\}_{n=0}^{\infty}$ defined inductively by

$$\phi_0(x) = 1$$
, $\phi_n(x) = \phi_{n-1}(x)(x - [n-1]w)$, $n \ge 1$,

and

$$\tilde{\phi}_0(x) = 1, \quad \tilde{\phi}_n(x) = \tilde{\phi}_{n-1}(x)(x - [n]w), \quad n > 1,$$

the factorial polynomials.

Lemma 2.1. We have

- (i) $\delta^n x^n = [n]!, \quad n > 1.$
- (ii) $\delta \phi_n(x) = [n] \phi_{n-1}(x), \quad \delta \tilde{\phi}_n(x) = [n] \tilde{\phi}_{n-1}(x), \quad n \ge 1.$ (iii) $\phi_n(\frac{1}{q}(x-w)) = \frac{1}{q^n} \tilde{\phi}_n(x), \quad \phi_{n+1}(x) = x \tilde{\phi}_n(x), \quad n \ge 0.$ (iv) $x \phi_n(x) = \phi_{n+1}(x) + w[n] \phi_n(x), \quad n \ge 0.$

(v)
$$\tilde{\phi}_n(x) = \phi_n(x) + \sum_{k=0}^{n-1} (-1)^{n-k} \frac{[n]!}{[k]!} w^{n-k} \phi_k(x), \ n \ge 0.$$

Proof. The proofs are straightforward.

For a moment functional σ and a polynomial $\phi(x)$, we let $\delta \sigma$, $\phi \sigma$, $T_{q,w}\sigma$ and $T_{q,w}^{-1}\sigma$ be the moment functionals defined by

$$\begin{split} \langle \phi \sigma, \psi \rangle &= \langle \sigma, \phi \psi \rangle, \quad \langle^+ \delta \, \sigma, \psi \rangle = - \langle \sigma, \delta \psi \rangle, \\ \langle T_{q,w}^{-1} \sigma, \psi \rangle &= \langle \sigma, T_{q,w}(\psi) \rangle = \langle \sigma, \psi(qx+w) \rangle, \\ \langle T_{q,w} \sigma, \psi \rangle &= \langle \sigma, T_{q,w}^{-1}(\psi) \rangle = \langle \sigma, \psi(\frac{1}{q}(x-w)) \rangle, \quad (\psi \in \mathcal{P}). \end{split}$$

Then the followings are easy consequences of definitions.

LEMMA 2.2. Let σ be a quasi-definite moment functional and $\{P_n(x)\}_{n=0}^{\infty}$ an OPS relative to σ . Then we have

- (i) for any polynomial $\phi(x)$, $\phi(x)\sigma=0$ if and only if $\phi(x)\equiv 0$.
- (ii) for any moment functional τ and any integer $k \geq 0$, $\langle \tau, P_n \rangle = 0$ for n > k if and only if $\tau = \psi(x)\sigma$ for some polynomial $\psi(x)$ of $degree \leq k$.

Proposition 2.3. Let σ be a moment functional. Then we have

- (i) $^{+}\delta \sigma = 0$ if and only if $\sigma = 0$;
- (ii) (Leibniz's rule) for any polynomial $\phi(x)$ and $\psi(x)$,

(2.3)
$$\delta(\phi(x)\psi(x)) = \phi(qx+w)\delta\psi(x) + \psi(x)\delta\phi(x);$$

(iii) for any polynomial $\phi(x)$,

$$(2.4) T_{q,w}^{-1}\delta\phi = q\delta(T_{q,w}^{-1}\phi), \delta(T_{q,w}\phi) = qT_{q,w}(\delta\phi);$$

(iv) for any polynomial $\phi(x)$,

$$(2.5) \qquad {}^{+}\delta(\phi\sigma) = T_{q,w}^{-1}\phi^{+}\delta\,\sigma + \delta(T_{q,w}^{-1}\phi)\sigma = \phi^{+}\delta\,\sigma + T_{q,w}(\delta\phi\sigma).$$

Proof. (i) It immediately follows from the relations

$$\langle \sigma, \phi_n(x) \rangle = \langle \sigma, \frac{1}{[n+1]} \delta(\phi_{n+1}(x)) \rangle = -\frac{1}{[n+1]} \langle^+ \delta \, \sigma, \phi_{n+1}(x) \rangle = 0, \ n \geq 0.$$

(ii) For any polynomials $\phi(x)$ and $\psi(x)$, we have

$$egin{aligned} \delta(\psi(x)\phi(x)) &= rac{\phi(qx+w)\psi(qx+w) - \phi(x)\psi(x)}{(q-1)x+w} \ &= rac{\phi(qx+w)(\psi(qx+w) - \psi(x))}{(q-1)x+w} + rac{\psi(x)(\phi(qx+w) - \phi(x))}{(q-1)x+w} \ &= \phi(qx+w)\delta\psi(x) + \psi(x)\delta\phi(x). \end{aligned}$$

- (iii) It comes easily from the definition of Hahn's operator.
- (iv) For any polynomial $\psi(x)$, we have by (ii)

$$\begin{split} \langle^+\delta(\phi\sigma),\psi\rangle &= -\langle\sigma,\phi(x)\delta\psi(x)\rangle \\ &= -\langle\sigma,\delta(\phi(\frac{1}{q}(x-w))\psi(x)) - \psi(x)\delta\phi(\frac{1}{q}(x-w))\rangle \\ &= \langle\phi(\frac{1}{q}(x-w))^+\delta\,\sigma + \delta\phi(\frac{1}{q}(x-w))\sigma,\psi\rangle. \end{split}$$

On the other hand, we have via (ii) for any polynomial $\psi(x)$,

$$\langle {}^{+}\delta(\phi\sigma), \psi \rangle = -\langle \sigma, \delta(\phi(x)\psi(x)) - \psi(qx+w)\delta\phi(x) \rangle$$
$$= \langle \phi(x) {}^{+}\delta \sigma + T_{q,w}^{-1}(\delta\phi(x)\sigma), \psi(x) \rangle.$$

Hence, we obtain (2.5). \square

3. Main results

The theory of semiclassical OPS's is well developed by many authors [9,11,12,14] when δ is the differential operator d/dx or the difference operator Δ . We now consider δ -semiclassical OPS's, which are first introduced by Maroni [10].

DEFINITION 3.1. ([10]) A quasi-definite moment functional σ is called δ -semiclassical if there is a pair of polynomials $(\alpha(x), \beta(x)) \neq (0, 0)$ such that

$$(3.1) {}^{+}\delta(\alpha\sigma) = \beta\sigma.$$

For any δ -semiclassical moment functional σ , we call

$$s := \min\{\max(\deg(\alpha) - 2, \deg(\beta) - 1)\}\$$

the class number of σ , where the minimum is taken over all pairs of polynomials $(\alpha, \beta) \neq (0, 0)$ satisfying the equation (3.1). In this case, we call σ a δ -semiclassical moment functional of class s and its corresponding OPS $\{P_n(x)\}_{n=0}^{\infty}$ is called a δ -semiclassical OPS of class s.

PROPOSITION 3.1. If σ is a δ -semiclassical moment functional satisfying the equation (3.1), then $\deg(\alpha) \geq 0$ and $\deg(\beta) \geq 1$ so that the class number s is non-negative.

Proof. Suppose that $\alpha(x) \equiv 0$. Then $\beta \sigma = {}^{+}\delta(\alpha \sigma) = 0$ so that $\beta(x) \equiv 0$ since σ is quasi-definite. It contradicts to $(\alpha, \beta) \neq (0, 0)$. Assume that $\beta(x) \equiv 0$. Then ${}^{+}\delta(\alpha \sigma) = 0$ so that $\alpha \sigma = 0$ and so $\alpha(x) \equiv 0$ which contradicts to $(\alpha, \beta) \neq (0, 0)$. If $\beta(x) \equiv c \neq 0$, then $c \neq 0$, then $c \neq 0$, $c \neq 0$, then $c \neq 0$ and $c \neq 0$ which also contradicts to quasi-definiteness of σ . \Box

Lemma 3.2. (cf.[5,8,13]) Let σ be a δ -semiclassical moment functional satisfying

(3.2)
$${}^{+}\delta(\phi_{1}\sigma) = \psi_{1}\sigma \qquad (s_{1} := \max(t_{1} - 2, p_{1} - 1)) \\ {}^{+}\delta(\phi_{2}\sigma) = \psi_{2}\sigma \qquad (s_{2} := \max(t_{2} - 2, p_{2} - 1)),$$

where $t_j = \deg(\phi_j)$ and $p_j = \deg(\psi_j)$, j = 1, 2. Let $\phi(x)$ be a common factor of $\phi_1(x)$ and $\phi_2(x)$ of the highest degree. Then, there is a polynomial $\psi(x)$ such that

$$^{+}\delta(\phi\sigma) = \psi\sigma,$$

where $s := \max(\deg(\phi) - 2, \deg(\psi) - 1) = s_1 - t_1 + \deg(\phi) = s_2 - t_2 + \deg(\phi)$.

Proof. We may assume that $\phi_1 = \tilde{\phi}_1 \phi$ and $\phi_2 = \tilde{\phi}_2 \phi$, where $\tilde{\phi}_1$ and $\tilde{\phi}_2$ have no common factor except real constants. From the equation (3.2), we have

(3.3)
$$(T_{q,w}^{-1}\tilde{\phi}_1)^+\delta(\phi\sigma) = (\psi_1 - \phi\delta(T_{q,w}^{-1}\tilde{\phi}_1)\sigma,$$

(3.4)
$$(T_{q,w}^{-1}\tilde{\phi}_2)^+\delta(\phi\sigma) = (\psi_2 - \phi\delta(T_{q,w}^{-1}\tilde{\phi}_2)\sigma.$$

Multiplying (3.3) by $T_{q,w}^{-1}\tilde{\phi}_2$ and (3.4) by $T_{q,w}^{-1}\tilde{\phi}_1$ and then substracting the two equations, we have

$$(T_{q,w}^{-1}\tilde{\phi}_2)[\psi_1 - \phi\delta(T_{q,w}^{-1}\tilde{\phi}_1)] = [\psi_2 - \phi\delta(T_{q,w}^{-1}\tilde{\phi}_2)](T_{q,w}^{-1}\tilde{\phi}_1).$$

Since $\tilde{\phi}_1$ and $\tilde{\phi}_2$ have no common factor, $T_{q,w}^{-1}\tilde{\phi}_1$ and $T_{q,w}^{-1}\tilde{\phi}_2$ also have no non-constant common factor. Hence, $\psi_2 - \phi\delta(T_{q,w}^{-1}\tilde{\phi}_2)$ and $\psi_1 - \phi\delta(T_{q,w}^{-1}\tilde{\phi}_1)$ are divisible by $T_{q,w}^{-1}\tilde{\phi}_2$ and $T_{q,w}^{-1}\tilde{\phi}_1$ respectively so that there exists a polynomial ψ such that

$$\psi_2 - \phi \delta(T_{q,w}^{-1} \tilde{\phi}_2) = \psi(T_{q,w}^{-1} \tilde{\phi}_2) \text{ and } \psi_1 - \phi \delta(T_{q,w}^{-1} \tilde{\phi}_1) = \psi(T_{q,w}^{-1} \tilde{\phi}_1).$$

From the equations (3.3) and (3.4), we have

$$(T_{q,w}^{-1}\tilde{\phi}_2)(^+\delta(\phi\sigma)-\psi\sigma)=0 \text{ and } (T_{q,w}^{-1}\tilde{\phi}_1)(^+\delta(\phi\sigma)-\psi\sigma)=0.$$

Since $T_{q,w}^{-1}\tilde{\phi}_1$ and $T_{q,w}^{-1}\tilde{\phi}_2$ have no common factor, we have

$$^{+}\delta(\phi\sigma) - \psi\sigma = 0.$$

Finally, the formula for s follows just by counting degrees of $\phi(x)$ and $\psi(x)$. \square

PROPOSITION 3.3. (cf.[5,8]) Let σ be a δ -semiclassical moment functional of class s satisfying the equation (3.1) with $s = \max(\deg(\phi) - 2, \deg(\psi) - 1)$. If σ satisfies the equation (3.1) with another pair of polynomials $(\phi_1, \psi_1) \neq (0, 0)$, then $\phi_1(x)$ is divisible by $\phi(x)$.

Proof. Let $\alpha(x)$ be a common factor of $\phi(x)$ and $\phi_1(x)$ of the highest degree. Then by Lemma 3.2, there is a polynomial $\beta(x)$ such that

$$^{+}\delta(\alpha\sigma) = \beta\sigma$$

and $s_0 := \max(\deg(\alpha) - 2, \deg(\beta) - 1) = s - \deg(\phi) + \deg(\alpha)$. Since $s_0 \ge s$, $\deg(\alpha) \ge \deg(\phi)$ so that $\alpha(x) = c\phi(x)$ for some non-zero constant c. Hence, $\phi(x)$ must divide $\phi_1(x)$. \square

COROLLARY 3.4. For any δ -semiclassical moment functional σ , the pair of polynomials $(\alpha, \beta) \neq (0, 0)$ which realizes the class number of σ is unique up to a non-zero-constant multiple.

Proof. Assume that two pairs of polynomials $(\alpha, \beta) \neq (0, 0)$ and $(\alpha_1, \beta_1) \neq (0, 0)$ realize the class number of σ . Then, by Proposition 3.3, $\alpha_1(x)$ is divisible by $\alpha(x)$ and vice versa. Hence, $\alpha(x) = c\alpha_1(x)$ for some non-zero constant c.

Maroni [10] have found several necessary and sufficient conditions for a moment functional σ to be δ -semiclassical.

DEFINITION 3.2. A PS $\{P_n(x)\}_{n=0}^{\infty}$ is called to be quasi-orthogonal of order $k, k \geq 0$ an integer, if there is a moment functional σ such that

(3.5)
$$\langle \sigma, P_m P_n \rangle = 0, \quad 0 \le m \le n - k$$

$$\langle \sigma, P_{r-k} P_r \rangle \ne 0, \quad \text{for some } r \ge k.$$

In this case, we say that $\{P_n(x)\}_{n=0}^{\infty}$ is quasi-orthogonal of order k relative to σ .

We see that any PS $\{P_n(x)\}_{n=0}^{\infty}$ is quasi-orthogonal of order 0 if and only if it is a WOPS.

THEOREM 3.5. Let $\{P_n(x)\}_{n=0}^{\infty}$ be an OPS relative to σ and $\{Q_n(x)\}_{n=0}^{\infty} := \{\delta(P_{n+1}(x))\}_{n=0}^{\infty}$. Then the followings are equivalent.

- (i) σ is δ -semiclassical;
- (ii) $\{Q_n(x)\}_{n=0}^{\infty}$ is quasi-orthogonal;
- (iii) There are integers s and t with $0 \le t \le s + 2$ and a polynomial $\alpha(x)$ of degree t such that for $n \ge s$,

(3.6)

$$\alpha(x)Q_n(x) = \sum_{j=n-s}^{n+t} \theta_{n,j}P_j(x), \quad \text{and} \quad \theta_{n,n-s} \neq 0 \quad \text{for some} \quad n \geq s.$$

Proof. See Theorem 3.1 in [10]. \square

We call (3.6) a structure relation of order one for a δ -semiclassical OPS $\{P_n(x)\}_{n=0}^{\infty}$.

PROPOSITION 3.6. Let $\{P_n(x)\}_{n=0}^{\infty}$ be an OPS relative to σ .

- (i) If σ is a δ -semiclassical moment functional satisfying (3.1), then for any integer $r \geq 1$, $\{\delta^r P_n(x)\}_{n=r}^{\infty}$ is quasi-orthogonal of order $\leq rs$ relative to $\alpha^r(x)\sigma$.
- (ii) If $\{\delta^r P_n(x)\}_{n=r}^{\infty}$ is quasi-orthogonal of order k for some integer $r \geq 1$, then $\{P_n(x)\}_{n=0}^{\infty}$ is a δ -semiclassical OPS of class $\leq k + 2r 2$.

Proof. See Theorem 4.2 and Theorem 4.4 in [10]. \square

In particular, when r=1, we obtain: $\{P_n(x)\}_{n=0}^{\infty}$ is a δ -semiclassical OPS of class 0 if and only if $\{\delta P_n(x)\}_{n=0}^{\infty}$ is a WOPS. Therefore, $\{P_n(x)\}_{n=0}^{\infty}$ is a Hahn-class OPS if and only if $\{P_n(x)\}_{n=0}^{\infty}$ is a δ -semiclassical OPS of class 0 (see Section one).

We now give some new characterizations of δ -semiclassical OPS's. First, we have:

THEOREM 3.7. Let σ be a quasi-definite moment functional. Then σ is a δ -semiclassical moment functional satisfying (3.1) if and only if

(3.7)
$$\langle \sigma, L[\phi]\psi \rangle = \langle \sigma, \phi L[\psi] \rangle, \quad (\phi(x) \text{ and } \psi(x) \in \mathcal{P})$$

where $L[\cdot] := \alpha(x)\delta^2 T_{q,w}^{-1} + \beta(x)\delta T_{q,w}^{-1}.$

K. H. Kwon, D. W. Lee, and S. B. Park

Proof. \Rightarrow) It can be easily shown that

$$L[\phi]\sigma = \frac{1}{q} {}^+\delta[(\delta\phi)\alpha\sigma], \quad \phi \in \mathcal{P}.$$

Hence, for any polynomials $\phi(x)$ and $\psi(x)$ we have

$$egin{aligned} \langle \sigma, L[\phi] \psi
angle &= rac{1}{q} \langle^+ \delta[(\delta \phi) lpha \sigma], \psi
angle &= rac{1}{q} \langle lpha \sigma, \delta \phi \delta \psi
angle \ &= rac{1}{q} \langle^+ \delta[(\delta \psi) lpha \sigma], \phi
angle &= \langle \sigma, L[\psi] \phi
angle. \end{aligned}$$

 \Leftarrow) By choosing $\phi(x) \equiv 1$, we have for any polynomial $\psi(x) \in \mathcal{P}$,

$$\begin{split} 0 &= \langle \sigma, L[1]\psi \rangle = \langle \sigma, L[\psi] \rangle = \langle \sigma, \alpha \delta^2(T_{q,w}^{-1}\psi) + \beta \delta(T_{q,w}^{-1}\psi) \rangle \\ &= -\langle {}^+\delta(\alpha\sigma) - \beta\sigma, \delta(T_{q,w}^{-1}\psi). \end{split}$$

Hence ${}^+\delta(\alpha\sigma)-\beta\sigma=0$ since any polynomial can be written in the form $\delta(T_{q,w}^{-1}\psi)(x)$. \square

The equation (3.7) means that the operator $\sigma L[\cdot]$ is formally symmetric on polynomials. We can also generalize Theorem 3.5 as:

THEOREM 3.8. Let $\{P_n(x)\}_{n=0}^{\infty}$ be an OPS relative to σ . Then for any integer $r \geq 1$, the followings are equivalent.

- (i) $\{P_n(x)\}_{n=0}^{\infty}$ is a δ -semiclassical OPS.
- (ii) There is an integer $u(\geq r)$ and a polynomial $\pi(x)$ of degree $t\geq 0$ such that

(3.8)
$$\pi(x)\delta^{r}(P_{n}(x)) = \sum_{j=n-u}^{n-r+t} \theta_{n,j} P_{j}(x), \quad n > u.$$

Proof. (i) \Rightarrow (ii) : Let σ satisfy ${}^{+}\delta(\alpha\sigma) = \beta\sigma$ for some polynomials $(\alpha, \beta) \neq (0, 0)$ with $s := \max (\deg \alpha - 2, \deg \beta - 1)$ and $\deg \alpha = k$. Then, we may write

(3.9)
$$\alpha^r(x)\delta^r(P_n(x)) = \sum_{j=0}^{n-r+rk} \theta_{n,j} P_j(x).$$

Multiplying both sides of (3.9) by $P_m(x)$, $m = 0, 1, \dots, n - r - rs$ and then applying σ , we have

$$\theta_{n,m}\langle\sigma,P_m^2\rangle=\sum_{j=0}^{n-r+rk}\theta_{n,j}\langle\sigma,P_mP_j\rangle=\langle\alpha^r(x)\sigma,P_m\delta^r(P_n)\rangle=0,$$

since $\{\delta^r P_n(x)\}_{n=0}^{\infty}$ is quasi-orthogonal of order $\leq rs$ relative to $\alpha^r(x)\sigma$ by Proposition 3.6 (i). Hence we have (3.8) with $\pi(x) = \alpha^r(x)$, u = r + rs and t = rk.

(ii) \Rightarrow (i): Assume that (3.8) holds for some integer $r \geq 1$. Then for $0 \leq m < n - u$,

$$\langle \pi \sigma, P_m \delta^r(P_n) \rangle = \sum_{j=n-u}^{n-r+t} \theta_{n,j} \langle \sigma, P_m P_j \rangle = 0$$

and so

$$\langle \pi \sigma, (\delta^r P_m)(\delta^r P_n) \rangle = 0 \text{ for } 0 \le m \le n - u + r.$$

Hence $\{\delta^r P_n(x)\}_{n=r}^{\infty}$ is quasi-orthogonal of order $\leq u-r$ relative to $\pi(x)\sigma$ so that $\{P_n(x)\}_{n=0}^{\infty}$ is a δ -semiclassical OPS of class $\leq u+2r-2$ by Proposition 2.6 (ii). \square

We may call (3.8) a structure relation of order r for a δ -semiclassical OPS $\{P_n(x)\}_{n=0}^{\infty}$. When $\delta = d/dx$ (that is, when $q \to 1$ and w = 0), Theorem 3.8 is proved in [9].

On the other hand, Al-Salam and Chihara [1] proved : an OPS $\{P_n(x)\}_{n=0}^{\infty}$ is classical, i.e., a semiclassical OPS of class 0 if and only if there is a polynomial $\pi(x)$ of degree ≥ 0 such that

$$\pi(x)P'_n(x) = r_n P_{n+1}(x) + s_n P_n(x) + t_n P_{n-1}(x), \quad n \ge 1,$$

where r_n , s_n , t_n are constants.

LEMMA 3.9. Let $\{P_n(x)\}_{n=0}^{\infty}$ be an OPS relative to σ . Then for any integer $k \geq 0$ and $n \geq 0$, we have

(3.10)
$$x^{k}P_{n}(x) = \sum_{j=n-k}^{n+k} C_{n,j}P_{j}(x),$$

where $C_{n,n+k} \neq 0$ and $C_{n,j} = 0$ for j < 0 and

(3.11)
$$P_{n+k}(x) = \pi_k(x;n)P_n(x) + \sum_{j=1}^k C_{n+k,j}P_{n-j}(x),$$

where $\pi_k(x; n)$ is a polynomial of degree k with coefficients depending on n and $C_{n+k,j} = 0$ for j > n.

Proof. We may write $x^k P_n(x)$ as $x^k P_n(x) = \sum_{j=0}^{n-k} C_{n,j} P_j(x)$. Then

$$C_{n,l}\langle \sigma, P_l^2 \rangle = \langle \sigma, P_l \sum_{j=0}^{n+k} C_{n,j} P_j \rangle = \langle \sigma, x^k P_l P_n \rangle = 0, \quad k+l < n.$$

Hence $C_{n,l} = 0$ if l < n - k and (3.10) follows. (3.11) can be proved easily for any fixed $n \ge 0$ by induction on $k \ge 0$ using the three term recurrence relation satisfied by $\{P_n(x)\}_{n=0}^{\infty}$. \square

THEOREM 3.10. Let $\{P_n(x)\}_{n=0}^{\infty}$ be an OPS relative to σ . Then for any integer $r \geq 1$, the followings are equivalent.

- (i) $\{P_n(x)\}_{n=0}^{\infty}$ is a Hahn class OPS (i.e., a δ -semiclassical OPS of class 0).
- (ii) There is a polynomial $\pi(x)$ of degree $t \geq 0$ such that

(3.12)
$$\pi(x)\delta^r(P_n(x)) = \pi_{t-r}(x;n)P_n(x) + \sum_{j=1}^r \theta_{n,j}P_{n-j}(x), \quad n > r,$$

where $\pi_{t-r}(x;n)$ is a polynomial of degree t-r with coefficients depending on n.

(iii) There is a polynomial $\pi(x)$ of degree t with $0 \le t \le 2r$ such that

(3.13)
$$\pi(x)\delta^r(P_n(x)) = \sum_{j=n-r}^{n-r+t} \theta_{n,j} P_j(x), \quad n > r.$$

Proof. The equivalence of (ii) and (iii) follows immediately from Lemma 3.9.

(i)⇒(iii): It is a special case of Theorem 3.8.

(iii) \Rightarrow (i): Assume that there is a polynomial $\pi(x)$ of degree $t \geq 0$ satisfying (3.13). Then $\{\delta^r P_n(x)\}_{n=r}^{\infty}$ is quasi-orthogonal of order 0, that is, $\{\delta^r P_n(x)\}_{n=r}^{\infty}$ is a WOPS (see the proof of Theorem 3.8). Hence, $\{P_n(x)\}_{n=0}^{\infty}$ must be a Hahn class OPS (see Section one). \square

If σ is a δ -semiclassical moment functional satisfying (3.1), then for any polynomial $\phi(x)$, σ also satisfies

$$^{+}\delta\{(\phi\alpha+\delta(\phi)[(q-1)x+w]\alpha)\sigma\}=(\phi\beta-\delta(\phi)\alpha)\sigma$$

so that σ satisfies infinitely many distinct equations of the form (3.1). It is so natural to ask: How can we see whether the pair (α, β) , with which σ satisfies (3.1), gives the class number of σ or not?

Lemma 3.11. Let σ be a quasi-definite moment functional and satisfy

$$(3.14) {}^{+}\delta(\alpha\sigma) - \beta\sigma = \pi(x)[{}^{+}\delta(\alpha_{1}\sigma) - \beta_{1}\sigma], \quad \pi \in \mathcal{P}.$$

Then, $\max(\deg(\alpha)-2, \deg(\beta)-1) = \deg(\pi)+\max(\deg(\alpha_1)-2\deg(\beta_1)-1)$.

Proof. By the direct calculation, we have ${}^+\delta(\alpha\sigma) - \beta\sigma = \pi(x)[{}^+\delta(\alpha_1\sigma) - \beta_1\sigma]$ if and only if

$$\alpha(x) = \pi(qx + w)\alpha_1(x), \quad \beta(x) = \alpha_1(x)\delta\pi(x) + \pi(x)\beta_1(x).$$

So we have $deg(\alpha) = deg(\pi) + deg(\alpha_1)$. If $\pi(x) = c \ (\neq 0)$, then $\alpha(x) = c\alpha_1(x)$ and $\beta(x) = c\beta_1(x)$ so that the conclusion is trivial. Assume that $deg(\pi) \geq 1$. Then there are three cases;

(a)
$$\deg(\alpha) - 2 > \deg(\beta) - 1$$
;

(b)
$$deg(\alpha) - 2 = deg(\beta) - 1$$
;

(c)
$$deg(\alpha) - 2 < deg(\beta) - 1$$
.

(a): Since $\deg(\alpha) - 2 > \deg(\beta) - 1$, we have $\max(\deg(\alpha) - 2, \deg(\beta) - 1) = \deg(\alpha) - 2$. On the other hand, by counting the degree of $\beta(x) - \delta(\pi)\alpha_1(x) = \pi(x)\beta_1(x)$ we have

$$\deg(\pi\beta_1) = \deg[\beta(x) - \delta(\pi)\alpha_1] \le \max(\deg(\beta), \deg(\delta(\pi)) + \deg(\alpha_1))$$
$$= \max(\deg(\beta), \deg(\alpha) - 1) = \deg(\alpha) - 1$$

so that $deg(\beta_1) \leq deg(\alpha_1) - 1$. Hence, we obtain

$$\deg(\pi) + \max(\deg(\alpha_1) - 2, \deg(\beta_1) - 1) = \deg(\pi) + \deg(\alpha_1) - 2$$

= \deg(\alpha) - 2,

which is the required result. The proof for cases (b) and (c) is similar to the above. \Box

LEMMA 3.12. ([12]) Let σ and τ be moment functionals and c be an arbitrary constant. Then $(x - c)\tau = \sigma$ if and only if

(3.15)
$$\tau = \tau_0 \delta_c + (x - c)^{-1} \sigma$$

where $\tau_0 = \langle \tau, 1 \rangle$ and δ_c is the dirac delta function at c.

THEOREM 3.13. (cf.[13]) Let σ be a δ -semiclassical moment functional satisfying (3.1) with $s := \max(\deg(\alpha) - 2, \deg(\beta) - 1)$. Then σ is of class s if and only if for any root c of $\alpha(x)$,

$$|r_c| + |\langle \sigma, \beta_c \rangle| \neq 0$$

where $\alpha(x) = (x-c)\alpha_c(x)$ and $\beta(x) - \delta(\frac{x-w-cq}{q})\alpha_c(x) = (\frac{x-w-cq}{q})\beta_c(x) + r_c$.

Proof. Let c be a root of $\alpha(x)$ and so $\alpha(x) = (x-c)\alpha_c(x)$. Then

$$0 = {}^{+}\delta(\alpha\sigma) - \beta\sigma = {}^{+}\delta[(x-c)\alpha_{c}(x)\sigma] - \beta\sigma$$

$$= (\frac{x-w-cq}{q}) {}^{+}\delta(\alpha_{c}(x)\sigma) + \delta(\frac{x-w-cq}{q})\alpha_{c}(x)\sigma - \beta\sigma$$

$$= (\frac{x-w-cq}{q}) {}^{+}\delta(\alpha_{c}(x)\sigma) - [\beta(x) - \delta(\frac{x-w-cq}{q})\alpha_{c}(x)]\sigma.$$

We set

$$\beta(x) - \delta(\frac{x - w - cq}{q})\alpha_c(x) = (\frac{x - w - cq}{q})\beta_c(x) + r_c.$$

Then $(\frac{x-w-cq}{q})[{}^{+}\delta(\alpha_c(x)\sigma)-\beta_c(x)\sigma]=r_c\sigma$. By Lemma 3.12,

$$au := {}^+\delta(lpha_c(x)\sigma) - eta_c(x)\sigma = au_0\delta_{w+cq} + (rac{q}{x-w-cq})r_c\sigma$$

and

$$au_0 = \langle au, 1 \rangle = \langle {}^+\delta(lpha_c\sigma) - eta_c\sigma, 1
angle = -\langle \sigma, eta_c
angle.$$

Suppose that σ is of class s but there is a root c of $\alpha(x)$ such that $r_c = 0$ and $\langle \sigma, \beta_c \rangle = 0$. Then $\tau = {}^+\delta(\alpha_c(x)\sigma) - \beta_c\sigma = 0$, so that

$$0 = {}^{+}\delta(\alpha\sigma) - \beta\sigma = (\frac{x - w - cq}{q})[{}^{+}\delta(\alpha_c\sigma) - \beta_c\sigma].$$

By Lemma 3.11, $s = 1 + \max(\deg \alpha_c - 2, \deg \beta_c - 1)$, so that $s \leq s - 1$. It is a contradiction.

Conversely, suppose that σ is of class $\tilde{s} < s$ but $r_c \neq 0$, $\langle \sigma, \beta_c \rangle \neq 0$ for any root c of $\alpha(x)$. Then there exists $(\tilde{\alpha}, \tilde{\beta}) \neq (0, 0)$ such that ${}^{\dagger}\delta(\tilde{\alpha}\sigma) = \tilde{\beta}\sigma$ and $\tilde{s}=\max(\deg\tilde{\alpha}-2, \deg\tilde{\beta}-1)$. By Proposition 3.3, there is a polynomial $\pi(x)$ with $\deg(\pi) \geq 1$ such that $\alpha(x) = \pi(x)\tilde{\alpha}(x)$. Hence, from the equation (3.1) we have

$$\beta \sigma = {}^{+}\delta(\alpha \sigma) = {}^{+}\delta(\pi(x)\tilde{\alpha}\sigma) = (T_{q,w}^{-1}\pi) {}^{+}\delta(\tilde{\alpha}\sigma) + \delta(T_{q,w}^{-1}\pi)\tilde{\alpha}\sigma$$
$$= ((T_{q,w}^{-1}\pi)\tilde{\beta} + \delta(T_{q,w}^{-1}\pi)\tilde{\alpha})\sigma$$

so that

$$\beta(x) = (T_{q,w}^{-1}\pi)\tilde{\beta} + \delta(T_{q,w}^{-1}\pi)\tilde{\alpha}.$$

Let c be a root of $\pi(x)$ and so $(x-c)=\pi_c(x)$. Then we have $\alpha_c(x)=$

 $\pi_c(x)\tilde{\alpha}(x)$ and so

$$\begin{split} \beta(x) &- \delta(\frac{x-w-cq}{q})\alpha_c(x) \\ &= \pi(\frac{x-w}{q})\tilde{\beta}(x) + \delta(\pi(\frac{x-w}{q}))\tilde{\alpha}(x) - \delta(\frac{x-w-cq}{q})\alpha_c(x) \\ &= (\frac{x-w-cq}{q})\pi_c(\frac{x-w}{q})\tilde{\beta}(x) + \delta[(\frac{x-w-cq}{q})\pi_c(\frac{x-w}{q})]\tilde{\alpha}(x) \\ &- \delta(\frac{x-w-cq}{q})\pi_c(x)\tilde{\alpha}(x) \\ &= (\frac{x-w-cq}{q})\pi_c(\frac{x-w}{q})\tilde{\beta}(x) - \delta(\frac{x-w-cq}{q})\pi_c(x)\tilde{\alpha}(x) \\ &+ \{\pi_c(x)\delta(\frac{x-w-cq}{q}) + (\frac{x-w-cq}{q})\delta(\pi_c(\frac{x-w}{q}))\}\tilde{\alpha}(x) \\ &= (\frac{x-w-cq}{q})[\pi_c(\frac{x-w}{q})\tilde{\beta}(x) + \delta(\pi_c(\frac{x-w}{q}))\tilde{\alpha}(x)], \end{split}$$

which implies $r_c = 0$ and $\beta_c(x) = \pi_c(\frac{x-w}{q})\tilde{\beta}(x) + \delta(\pi_c(\frac{x-w}{q}))\tilde{\alpha}(x)$. On the other hand, we have

$$egin{aligned} \langle \sigma, eta_c
angle &= \langle \sigma, \pi_c(rac{x-w}{q}) ilde{eta}(x) + \delta(\pi_c(rac{x-w}{q})) ilde{lpha}(x)
angle \\ &= \langle ilde{eta}(x) \sigma, \pi_c(rac{x-w}{q})
angle - \langle {}^+\delta(ilde{lpha}\sigma), \pi_c(rac{x-w}{q})
angle \\ &= 0, \end{aligned}$$

which contradicts to $r_c \neq 0$ and $\langle \sigma, \beta_c \rangle \neq 0$ for any root c of $\alpha(x)$. \square

Theorem 3.13 for $\delta = d/dx$ was proved in [13].

Acknowledgements. This work is partially supported by KOSEF(95-0701-02-01-3) and Korea Ministry of Education (BSRI 1420).

References

W.A. Al-Salam and T.S. Chihara, Another characterization of classical orthogonal polynomials, SIAM J. Math. Anal. 3 (1972), 65-70.

On δ -semiclassical orthogonal polynomials

- T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon Breach, N.Y., 1977.
- 3. A. G. García, F. Marcellán, and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comp. Appl. Math., 57 (1995), 147-162.
- W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., 2 (1949), 14-34.
- 5. K. H. Kwon, D. W. Lee, and S. B. Park, New characterizations of discrete classical orthogonal polynomials, J. Approx. Th., to appear.
- 6. K. H. Kwon, D. W. Lee, S. B. Park, and B. H. Yoo, Discrete classical orthogonal polynomials, J. Diff. Eqs. Appl., to appear.
- 7. _____, Hahn class orthogonal polynomials, submitted.
- 8. K. H. Kwon, L. L. Littlejohn, and B. H. Yoo, New characterizations of classical orthogonal polynomials, Indag. Math. N.S., 7 (1996), 199-213.
- 9. K. H. Kwon and S. B. Park, On semi-classical orthogonal polynomials, preprint.
- P. Maroni, Introduction à'éude des δ-polynômes orthogonaux semi-classiques, Publ. Labo. Anal. Num. 85041, Univ. P et M. Curie, Paris 1985. Aussi dans Actas, III Simposium sobre Polinomios orthogonales y applicaciones. Ed. F. marcellán, Segovia 1985.
- 11. _____, Prolégomènes a l'étude des polynomes orthogonaux semi-classiques, Ann. Mat. Pura Appl., 149 (1987), 165-184.
- Une theorie algebrique des polynomes orthogonaux. Application aux polynomes orthogonaux semi-classiques, In "Orthogonal Polynomials and their applications" C. Brezinski, L. Gori and A. Ronveaux Ed. J.C. Baltzer AG, IMACS Annals on computing and Applied Mathematics 9 (1991), 95-130.
- 13. _____, Variations around classical orthogonal polynomials. Connected problems, J. Comp. Appl. Math., 48 (1993), 133-155.
- A. Ronveaux, Discrete semi-classical orthogonal polynomials: Generalized Meixner, J. Approx. Th., 46 (1986), 403–407.

K. H. KWON, D. W. LEE

DEPARTMENT OF MATHEMATICS KAIST, TAEJON 305-701 KOREA *E-mail*: khkwon@jacobi.kaist.ac.kr

S. B. Park

Department of Mathematics Korea Military Academy, Seoul 139-799 Korea