References
- Almeida, J.P.M. (1991), "Modelos de elementos finitos para a anaise elastoplatica", Ph.D. Thesis, Universidade Tecnica de Lisboa.
- Almeida, J.P.M. (1991), "Alternative approach to the formulation of hybrid equilibrium finite elements", Comp. & Struct., 40,1043-1047. https://doi.org/10.1016/0045-7949(91)90336-K
- Almeida, J.P.M. (1992), "Janela: uma interface grafica destinada a aplicacao em problemas de Mecanica Computacional", Internal Report, IST, Lisbon.
- Almeida, J.P.M. and Freitas, J.A.T. (1995), "Equilibrated or compatible finite element solutions in the elastoplastic analysis of stretching plates", COMPLAS V, 2071-2080, Barcelona.
- Almeida, J.P.M. and Freitas, J.A.T. (1996), "On the parallel implementation of non-conventional finite element formulations", M. Papadrakakis, ed., Advanced Finite Element Solution Techniques, CIMNE, Barcelona, 39, 3175-3194.
- Almeida, J.P.M. and Pereira, O.J.B.A. (1996), "A set of hybrid equilibrium finite element models for the analysis of three-dimensional solids", Int. J. Num. Meth. Engng., 39, 2789-2802. https://doi.org/10.1002/(SICI)1097-0207(19960830)39:16<2789::AID-NME976>3.0.CO;2-J
- Castro, L.M.S.S. and Freitas, J.A.T. (1996)," Hybrid-mixed finite element elastoplastic analysis based on Walsh and wavelet interpolation", M. Papadrakskis, ed., Advanced Finite Element Solution Techniques, CIMNE, Barcelona, in press.
- Chudnovsky, A. and Kachanov, M. (1983), "Interaction of a crack with a field of microcracks", Int. J. Eng. Sci., 21, 1009-1018. https://doi.org/10.1016/0020-7225(83)90078-2
- Cottle, R.W. (1963), "Symmetric dual quadratic programs", Q. Appl. Maths., 21, 237-241. https://doi.org/10.1090/qam/156707
- Daubechies, I. (1988), "Orthonormal bases of compactly supported wavelets", Comm. on Pure & Appl. Mathematics, 41, 906-996.
- de Veubeke, B.F. (1965), "Displacement and equilibrium models in the finite element method", in Stress Analysis, ed. by O.C. Zienckiewicz and G.S. Holister, Wiley, London, 145-196.
- Dong, Y.F. and Freitas, J.A.T. (1993), "Alternative approach for hybrid stress elements with incompatible displacements", CIVILCOMP93, Edinburgh, 99-105.
- Freitas, J.A.T. (1989), "Duality and symmetry in mixed integral methods of elastostatics", Int. J. Num. Meth. Engng., 28, 1161-1179. https://doi.org/10.1002/nme.1620280512
- Freitas, J.A.T. and Pereira, E.M.B.R. (1991)," Application of the Mathieu series to the boundary integral method", Comp. & Struct., 40, 1307-1314. https://doi.org/10.1016/0045-7949(91)90400-G
- Freitas, J.A.T. and Castro, L.M.S.S. (1992), "Digital interpolation in mixed finite element structural analysis", Comp. & Struct., 44, 743-751. https://doi.org/10.1016/0045-7949(92)90458-C
- Freitas, J.A.T. and Ji, Z.Y. (1996), "Hybrid-Trefftz boundary integral formulation for simulation of singular stress fields", Int. J. Num. Meth. Engng., 39, 281-308. https://doi.org/10.1002/(SICI)1097-0207(19960130)39:2<281::AID-NME857>3.0.CO;2-X
- Freitas, J.A.T. and Ji, Z.Y. (1996), "Hybrid-Trefftz equilibrium model for crack problems", Int. J. Num. Meth. Engng., 39, 569-584. https://doi.org/10.1002/(SICI)1097-0207(19960229)39:4<569::AID-NME870>3.0.CO;2-8
- Freitas, J.A.T. and Castro, L.M.S.S. (1996), "Finite element solutions with Walsh series and wavelets", CAMES, in press.
- Freitas, J.A.T. (1996), "Hybrid-Trefftz displacement and stress elements for elastodynamic analysis in the frequency domain", CAMES, in press.
- Harwell Subroutine Library (1993), Release 11, Theoretical Studies Department, AEA Technology, Harwell.
- Kachanov, M. (1986), "On crack-microcrack interactions", Int. J. Fract., 30, R65-R72. https://doi.org/10.1007/BF00019712
- Karush, W. (1939), "Minima of functions of several variables with inequalities as side conditions", M.S. Thesis, University of Chicago.
- Kuhn, H.W. and Tucker, A.W. (1951), "Nonliear Programming", 2nd Berkeley Symp. on Mathematical Statistics and Probability, Berkeley.
- Kunzi, H.P., Krelle, W. and Tucker, A.W. (1966), "Nonlinear Programming", Blaisdel.
- Maier, G. and Munro, J. (1982), "Mathematical programming applications to engineering plastic analysis", AM update.
- Maier, G. and Smith, D.L. (1986), "Mathematical programming applications to engineering plastic analysis", AM Update.
- Maiti, S.K. (1992), "A multicorner variable order singularity triangle to model neighbouring singularities", Int. J. Numer. Meth. Engng., 35, 391-408. https://doi.org/10.1002/nme.1620350210
- Maunder, E.A.W., Almeida, J.P.M. and Ramsay, A.C.A. (1996), "A general formulation of equilibrium macro-elements with control of spurious kinematic modes - The exorcism of an old curse", Int. J. Num. Meth. Engng., 39, 3175-3194. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3175::AID-NME978>3.0.CO;2-3
- Pereira, E.M.B.R. (1993), "Elementos finitos de tensao aplicados a analise elastica de estruturas, Ph.D. Thesis, Universidade Tecnica de Lisboa.
- Pereira, E.M.B.R. and Freitas, J.A.T. (1996), "A mixed-hybrid finite element model based on orthogonal functions", Int. J. Num. Meth. Engng., 39, 1295-1312. https://doi.org/10.1002/(SICI)1097-0207(19960430)39:8<1295::AID-NME903>3.0.CO;2-H
- Pereira, E.M.B.R. and Freitas, J.A.T. (1996), "Hybrid-mixed finite element model based on Legendre polynomials for Reissner-Mindlin plates", Comp. Meth. Appl. Mech. Engng., in press.
- Pian, T.H.H. and Tong, P. (1969), "Basis of finite element methods for solid continua", Int. J. Num. Meth. Engng., 1, 3-28. https://doi.org/10.1002/nme.1620010103
- Pian, T.H.H. and Wu, C.C. (1988), "A rational approach for choosing stress terms elements with incompatible displacements", Int J Num Meth Engrng., 26, 2331-2343. https://doi.org/10.1002/nme.1620261014
- Pissanetzky, S. (1984), "Sparse matrix technology", Academic Press Inc.
- Ramsay, A.C.A. (1995), "Robust variable degree equilibrium elements: their formulation and application", Report for Human Capital and Mobility Network, ERB4050PL1930382.
- Rebelo, J.S. (1993), "Modelos de elementos finitos para a anaise elatica de lajes, PhD Thesis, Universidade Tecnica de Lisboa.
- Stolarski, H. and Belytschko, T. (1987), "Limitation principles for mixed finite elements based on the Hu-Wahizu variational formulation", Comp. Meth. Appl. Mech. & Eng., 60, 195-216. https://doi.org/10.1016/0045-7825(87)90109-5
- Walsh, J.L. (1923), "A closed set of orthogonal functions", Ann. J. Math., 55, 5-24.
Cited by
- Hybrid finite element formulations for elastodynamic analysis in the frequency domain vol.36, pp.13, 1999, https://doi.org/10.1016/S0020-7683(98)00064-X
- GENERALIZED FINITE ELEMENT METHOD ON NONCONVENTIONAL HYBRID-MIXED FORMULATION vol.09, pp.03, 2012, https://doi.org/10.1142/S0219876212500387
- A new hybrid-mixed stress model for the analysis of concrete structures using damage mechanics vol.125, 2013, https://doi.org/10.1016/j.compstruc.2013.04.017
- On the parallel implementation of a hybrid-mixed stress formulation vol.158, 2015, https://doi.org/10.1016/j.compstruc.2015.05.022
- Computational structures technology: leap frogging into the twenty-first century vol.73, pp.1-5, 1999, https://doi.org/10.1016/S0045-7949(99)00075-9
- Formulation of elastostatic hybrid-Trefftz stress elements vol.153, pp.1-2, 1998, https://doi.org/10.1016/S0045-7825(97)00042-X
- Three-dimensional hybrid-Trefftz stress elements vol.47, pp.5, 2000, https://doi.org/10.1002/(SICI)1097-0207(20000220)47:5<927::AID-NME805>3.0.CO;2-B
- Comparative analysis of hybrid-trefftz stress and displacement elements vol.6, pp.1, 1999, https://doi.org/10.1007/BF02828329
- Wavelets in hybrid-mixed stress elements vol.190, pp.31, 2001, https://doi.org/10.1016/S0045-7825(00)00313-3