Motion Search Region Prediction using Neural Network Vector Quantization

신경 회로망 벡터 양자화를 이용한 움직임 탐색 영역의 예측

  • Published : 1996.01.01

Abstract

This paper presents a new search region prediction method using vector quantization for the motion estimation. We find motion vectors using the full search BMA from two successive frame images first. Then the motion vectors are used for training a codebook. The trained codebook is the predicted search region. We used the unsupervised neural network for VQ encoding and codebook design. A major advantage of formulating VQ as neural networks is that the large number of adaptive training algorithm that are used for neural networks can be applied to VQ. The proposed method reduces the computation and reduce the bits required to represent the motion vectors because of the smaller search points. The computer simulation results show the increased PSNR as compared with the other block matching algorithms.

본 논문에서는 동영상 압축의 핵심 기술인 움직임 벡터 추정에 있어서 신경 회로망을 이용한 벡터 양자화에 의해 탐색 영역을 예측하는 방법을 제안한다. 훈련영상을 입력으로 하여 전역 탐색법 등에 의하여 구해진 움직임 벡터를 이용하여 움직임 벡터 코드 북을 생성하고 이를 예측 탐색 점으로 이용한다. 움직임 벡터 코드 북을 생성하기 위해서 병렬 처리 특성과 다양한 학습 알고리즘을 갖는 신경 회로망을 이용하였다. 제안된 방법은 움직임 벡터들의 높은 공간적 상관성을 이용하게 되고 결과적으로 적은 탐색 점으로 움직임 벡터를 추정할 수 있으므로 계산량을 줄일 수 있을 뿐 아니라 움직임 벡터를 표현하기 위해 소요되는 비트 수도 크게 줄일 수 있다. 모의 실험을 통하여 제안된 방식이 기존의 고속 블록 매칭 알고리즘보다 우수함을 보였다.

Keywords