Acknowledgement
Supported by : 한국학술진흥재단
The numerical step in the unsteady viscous flow analysis can be divided in the space analysis step satisfying continuity equation and the time marching step. In this study the spectral method is applied to solve the pressure Poisson equation in the space analysis step. If the highest order differential term of the pressure Poisson equation is transformed by Fourier series, pressure arid its first derivatives can be expressed by the integral form of Fourier series. So Gibb's phenomena can be eliminated and the spectral method can be applied to non-periodic problems. The numerical analysis of unsteady viscous flow around 2-dimensional circular cylinder and wing is carried out and compared for verification.
비정상 점성유동 수치해석단계는 연속방정식을 만족시키는 공간해석단계와 시간전진단계로 구분할 수 있다. 본 연구에서는 공간해석단계의 압력 Poisson 방정식의 해를 구하는데 스팩트럴법을 이용하였다. 압력 Poisson 방정식의 최고차미분항을 Fourier 급수로 전개하면 압력 및 압력의 1차미분항의 Fourier 급수의 적분으로 표현되므로 Gibb's 현상을 제거할 수 있어, 비주기성인 경우에도 스팩트럴법을 적용할 수 있다. 수치해법의 검증을 위하여 2차원 원주상체 및 날개주위 비정상 점성유동을 수치해석하였고, 그 결과를 비교하여 보았다.
Supported by : 한국학술진흥재단