Analysis of Bridging Stress Effect of Polycrystalline Aluminas Using Double Cantilever Beam Method II. Development of Double Cantilever Beam Method Considering Bridging Effect

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해서 II. Bridging 효과를 고려한 Double cantilever Beam 분석방법의 정립

  • 손기선 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터) ;
  • 백성기 (포항공과대학교 항공재료연구센터)
  • Published : 1996.05.01

Abstract

This study aims at developing the double cantilever beam (DCB) method in order to calculate the bridging stress distribution in polycrystalline aluminas with different grain sizes. In the already existing DCB methods the measured crack opening displacement (COD) in coarse-grained aluminas deviates generally from the calcula-ted one because of the grain-interface bridging in the crack wake. In the current DBC method developed in the present study the effect of the bridging stress was considered in the DCB analysis. whereas the only effect of applied point-loading at the end of DCB specimen was taken into account in the existing DCB analysis The crack closure due to bridging stress was calculated using the power-law relation and the theoretical model developed in Part I of the present paper as bridging stress function and then compared analytically. The limitations of the current DCB methods such as specimen dimensions applied loads and elastic modulus were discussed in detail to provide a reliability of the newly developed DCB analysis for the bridging stress distribu-tion in polycrystalline aluminas.

Keywords

References

  1. J Mater. Sci. Lett v.5 no.8 R-Curve Behavior in a Polycrystalline Alumina Material M V. Swain
  2. J Am. Ceram. Soc v.71 no.6 Determination of Crack-Bridging Forces in Alumina A. Reichl;R.W. Steinbrech
  3. J Mater Sci Eng. v.12 Sub-Critical Crack Extension and Crack Resistance in Polycrystalline Alumina H. Hubner;W Jillik
  4. J Mater. Sci Lett. v.1 no.8 Memory Effect of Crack Resistance during Slow Crack in Notched Al₂O₃ Bend Specimens R Knehans;R. Steinbrech
  5. J Am. Ceram. Soc. v.72 no.7 High-Temperature Failure of an Alumina-Silicon Carbide Composite under Cyclic Loads: Mechanisms of Fatigue Crack-Tip Damage L.X Han;S. Suresh
  6. J. Mater. Sci. v.22 Fracture Toughness Measurements in Ceramics: Pre-Cracking in Cyclic Compression S. Suresh;L. Ewart;M. Maden;W.S. Slaughter;M. Nguyen
  7. J. Am Ceram Soc. v.75 no.4 Subcritical Crack Growth of Macrocracks in Alumina with R-Curve Behavior T. Fett;D. Munz
  8. J Mater Sci Lett v.10 Subcritical Crack Growth of Macrocracks in Zirconia T. Fett;D. Munz
  9. Metall. Trans. A v.6A Slow Crack Growth in Ceramic Materials at Elevated Temperatures A.G. Evans;L.R. Russell;D.W. Richerson
  10. J. Am Ceram Soc v.63 no.7 Subcritical Crack Growth in Dense Alumina Exposed to Physiological Media M.K. Ferber;S.D. Brown
  11. J. Mater. Sci. v.7 A Method for Evaluating the Time Dependent Failure Characteristics of Brittle Materials and Its Application to Polycrystalline Alumina A.G. Evans
  12. J. Am Ceram. Soc. v.63 no.5 Indentation-Precracking and Double-Torsion Methods for Measuring Fracture Mechanics Parameters in Hot-Pressed Si₃N₄ R.K. Govila
  13. Acta Metall. Mater. v.38 no.6 R-Curve Behavior of Al₂O₃ Ceramics G. Vekinis;M.F. Ashby;P.W.R. Beaumont
  14. J. Am Ceram. Soc. v.73 no.4 Cyclic Fatigue-Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics R.H. Dauskardt;D.B. Marshall;R.O. Ritchie
  15. J. Am. Ceram. Soc. v.75 no.4 Cyclic Fatigue-Crack Growth in a SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behavior R.H. Dauskardt;M.R. James;J R. Porter;R.O. Ritchie
  16. J. Am. Ceram. Soc. v.73 no.11 In Situ Measurement of Bridged Crack Interfaces in the Scanning Electron Microscope J. Rodel;J.G. Kelly;B.R. Lawn
  17. J Am Ceram. Soc. v.74 no.12 In Situ Observation of Toughening Processes in Alumina Reinforced with Silicon Carbide Whiskers J. Rodel;E.R. Fuller, Jr.;B.R. Lawn
  18. J Am. Ceram. Soc. v.66 no.12 Energy Principle of Elastic-Plastic Fracture and Its Application to the Fracture Mechanics of a Polycrystalline Graphite M. Sakai;K. Urashima;M. Inagaki
  19. J. Am Ceram Soc. v.72 no.3 Dimensionless Load-Displacement Relation and Its Application to Crack Propagation Problems M. Sakai;M. Inagaki
  20. J. Am Ceram Soc v.77 no.1 Crack Shielding in Ce-TZP/Al₂O₃ Composites: Comparison of Fatigue and Sustained Load Crack Growth Specimens J.-F. Tsai;J.D. Belnap;D.K. Shetty
  21. J. Am. Ceram. Soc. v.64 no.9 A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:Ⅰ Direct Crack Measurements G.R. Anstis;P. Chantikul;B.R. Lawn;D.B. Mashall
  22. J. Am. Ceram Soc. v.64 no.9 A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: Ⅱ Strength Method G.R. Anstis;P. Chantikul;B.R. Lawn;D.B. Mashall
  23. J. Am. Ceram. Soc. v.66 no.11 A Modified Indentation Toughness Technique R.F. Cook;B.R. Lawn
  24. J. Am. Ceram. Soc. v.74 no.10 Rising Crack-Growth-Resistance (R-Curve) Behavior Toughened Alumina and Silicon Nitride N. Nageswaran;D.K. Shetty
  25. J. Am Ceram. Soc. v.75 no.11 Objective Evaluation of Short-Crack Toughness Curves Using Indentation Flaws: Case Study on Alumina-Based Ceramics L.M. Braun;S.J. Bennison;B.R. Lawn
  26. J Mater. Res v.24 no.3 Crack Resistance by Interfacial Bridging: Its Role in Determining Strength Characteristics R.F. Cook;C.J. Fairbanks;B.R. Lawn;Y.W. Mai
  27. J. Mater. Sci v.24 Flaw Tolerance in Ceramics with Rising Crack Resistance Characteristics S.J. Bennison;B.R. Lawn
  28. J. Mater Sci v.24 Fatigue Limits in Noncyclic Loading of Ceramics with Crack-Resistance Curves S. Lathabai;B.R. Lawn
  29. J. Am Ceram Soc v.71 no.5 Rising Fracture toughness from the Bending Strength of Indented Alumina Bends R.F. Krause, Jr.
  30. Am Ceram. Soc. v.73 no.3 Fracture Resistance Behavior of Silicon Carbide Whisker-Reinforced Alumina Composites with Different Porosities R.F. Krause, Jr.;E.R. Fuller, Jr.;J.F. Rhodes
  31. J. Am. Ceram. Soc. v.75 no.7 R-Curve Behavior and Strength for In-Situ Reinforced Silicon Nitrides with Different Microstructures C.-W. Li;D.-J. Lee;S.-C. Lui
  32. Eng Frac. Mech v.15 An Empirical Stress-Intensity Factor Equation for the Surface Crack J.C. Newman, Jr.;I.S. Raju
  33. J Am. Ceram Soc. v.77 no.1 Flat and Rising R-Curves for Elliptical Surface Cracks from Indentation and Superposed Flexure R.F. Krause, Jr.
  34. J Am Ceram. Soc v.77 no.2 Flat R-Curve from Stable Propagation of Indentation Cracks in Coarse-Grained Alumina D. Bleise;R.W. Steinbrech
  35. J App Phys. v.31 no.12 Direct Measurement of the Surface Energies of Crystals J.J. Gilman
  36. J App. Phys v.35 no.3 Double-Cantilever Cleavage Mode of Crack Propagation P.P. Gillis;J.J. Gilman
  37. NASA TND-2395 B. Gross;J.E. Srawley
  38. J. App. Phys. v.39 no.3 Critical Analysis of the Double Cantilever Method of Measuring Fracture-Surface Energies S.M. Wiederhorn;A.M. Shorb;R.L. Moses
  39. Int J Frac. v.9 no.1 An Augumented Double Cantilever Beam Model for Studying Crack Propagation and Arrest M.F. Kanninen
  40. Int J Frac. v.16 no.2 Fracture studies with DCB Specimen C.L. Chow;C.W. Woo
  41. J. Mater Sci. v.8 Crack Propagation Studies in Brittle Materials S.W. Freiman;D R. Mulville;P.W. Mast
  42. J Am Ceram Soc. v.74 no.7 Evaluation of the Crack Face Bridging Mechanism in a MgAl₂O₄ Spinel K.W. White;G.P. Kelkar
  43. J. Am. Ceram. Soc. v.73 no.6 Constant-KI Double-Cantilever-Beam Test for Ceramic Materials P.S. Nicholson
  44. J Am. Ceram. Soc. v.72 no.4 Small-Specimen Double-Cantilever-Beam Test Applicable to Monoliths and Joints G.D. With
  45. J. Am. Ceram. Soc v.72 no.7 Effect of Crack-Interface Bridging on Subcritical Crack Growth in Ferrites E.K. Beauchamp;S.L. Monroe
  46. An Introduction to the Mechanics of Solids S.H. Crandall;N.C. Dahl;T.J. Lardner
  47. Fracture of Brittle Solids B R. Lawn;T.R. Wilshaw
  48. Adv. Appl. Mech v.7 The Mechanical Theory of Equilibrium Cracks in Brittle Fracture G.I. Barenblatt
  49. Fracture Mechanics: Sixteenth Symposium, ASTM STP 868 The Dugdale Model for Compact Specimen S. Mall;J.C. Newman, Jr.;M.F. Kanninen(ed.);A.T. Hooper(ed.)
  50. Alumina E. Dorre;H. Hubner
  51. J. Am. Ceram. Soc. v.45 Effect of Young's Modulus of Alumina F.P. Knudsen
  52. J. Am Ceram. Soc. v.39 Effect of Porosity on Physical Properties of Sintered Alumina R.L Coble;W.D. Kingery
  53. Proc. Phys. Soc. v.63B The Elastic Constants of a Solid Containing Spherical Holes J.K. Mackenzie
  54. Ceramic Microstructures Elasticity of Ceramic Systems Z Hashin;R.M. Fulrath(ed.);J.A. Pask(ed.)
  55. J. Am. Ceram. Soc. v.44 Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Alumina Oxide R.M Sprigg