Abstract
Inthis apper wa analyzed the channel-hot-electron programming characteristics of the single-poly EEPROM with different control gate and drain structures. The single-poly EEPROM uses the p$^{+}$/n$^{+}$-diffusion in the n-well as a control gate instead of the second poly-silicon. The program and erase characteristics of the single-poly EEPROM were verified using the two-dimensional device simulator, MEDICI. The single-poly EEPROM was fabricated using 0.8$\mu$m ASIC CMOS process, and its CHE programming characteristics were measured using HP4155 parameteric analyzer and HP8110 pulse gnerator. Especially we investigated the CHE programming characteristics of the single-poly EEPROM with the p$^{+}$-diffusion or n$^{+}$-diffusion in the n-well as a control gate and the LDD or single-drain structure. The single-poly EEPROM with p$^{+}$-diffusion in the n-well as a control gate and single-drain structure was programmed to about VT$\thickapprox$5V with VDS=6V, VCG=12V(1ms pulse width).th).