Effect of Copper Ion on Oxygen Damage in Superoxide Dismutase-Deficient Saccharomyces Cerevisiae

  • Published : 1996.06.01

Abstract

Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxidative stresses induced by 0.1 mM of copper ion $(Cu^{++})$ was studied. In aerobic culture condition, yeasts lacking MnSOD (mitochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared withwild type were observed under anaerobic condition. It was found that, under aerobic condition, the supplementation of 0.1 mM copper ioh:(Cu") into culture medium caused the remarkable increase of CuZnSOD but not so significant change in MnSOD. It was also observed that catalase activities appeared to be relatively high in the presence of copper ion in spite of the remarkable reduction of glutathion peroxidase in CuZnSOD-deficient yeasts, but the slight increments of catalase and glutathion peroxidase were detected in MnSOD-deficient strains. It implies that the lack of cytoplasmic SOD could be compensated mainly by catalase. However, these phenomena resulted in the significantincrease of cellular lipid peroxides content in CuZnSOD-deficient yeasts and the slight increment of lipid peroxides in MNSOD-deficient cells. In anaerobic cultivation supplementing copper ion, the cellular enzyme activities of catalase and glutathion peroxidase in SOD-deficient yeasts were slightly increased without any significant changes of lipid peroxides in cell membrane. It suggests that a little amount of free radicals generated by copper ion under anaerobic condition could be sufficiently overcome by catalase as well as glutathion peroxidase.dase.

Keywords