• Title/Summary/Keyword: Oxygen damage

Search Result 1,085, Processing Time 0.041 seconds

Control of Singlet Oxygen-induced Oxidative Damage in Escherichia coli

  • Kim, Sun-Yee;Kim, Eun-Ju;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.353-357
    • /
    • 2002
  • Singlet oxygen ($^1O_2$) is highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide desmutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of anticxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.

Phenanthrene-induced Oxidative DNA Damage of Lymphocytes and the Suppression by Ginseng Extract (페난트렌에 의한 임파구 DNA의 산화적 손상과 인삼추출물에 의한 억제)

  • Yoo, Ah-Reum;Lee, Mi-Young
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • Phenanthrene ($C_{14}H_{10}$) is a polycyclic aromatic hydrocarbon with three aromatic rings, and it can be produced by incomplete combustion of fossil fuels. Comet assay was used to examine the oxidative DNA damage of lymphocytes by phenanthrene and to measure the suppressive effects of ginseng extract on the DNA damage in this investigation. The in vitro oxidative DNA damage by phenanthrene increased in a dose-dependent manner in the lymphocyte. However, the DNA damage was significantly inhibited by ascorbate. Moreover, pretreatment, cotreatment and posttreatment with ginseng extract enhanced lymphocyte resistance to the phenanthrene-induced DNA damage. Phenanthrene enhanced the generation of intracellular reactive oxygen species, and the elevated reactive oxygen species level was reduced by treatment with ginseng extract.

Change of Dermal Oxygen Free Radical Metabolizing Enzyme Activities in Acute Liver Damage Induced with $CCl_4$ in Rats (급성 간손상의 실험동물 피부조직에 있어서 Oxygen Free Radical의 대사효소 활성 변동)

  • 채순님;전태원;윤종국
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • To evaluate an effect of liver damage on the dermal oxygen free radical metabolizing enzyme activities, the $CCl_4$ (0.1 ml/ 100 g body wt., 50% $CCl_4$ in olive oil) was intraperitoneally given to the rats every other day for 2 weeks. Based on the histopathological findings, liver weight (%), serum alanine aminotransferase, xanthine oxidase activities and hepatic lipid peroxide contents, the animals were induced severe liver damage. In the present liver damaged animal, all the activities of dermal scavenging enzymes such as superoxide dismutase, catalase and glutathione peroxidase were significantly decreased compared with central. And under the cytochemical electron microscopy the more coarse granules of cerrous perhydroxide were found compared with the control. In conclusion, the $CCl_4$-induced liver damage may influence upon the activities of some dermal oxygen free radical scavenging enzymes.

  • PDF

Oxidative stress on anaerobes

  • Takeuchi, Toru;Shi, Minyi;Kato, Naoki;Watanabe, Kunitomo;Morimoto, Kanehisa
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.142-145
    • /
    • 2002
  • A strict anaerobe, Prevotella melaninogenica is highly sensitive to oxidative stress. Oxidative stress such as exposure to oxygen or addition of hydrogen peroxide, increased 8-hydroxydeoxyguanosine (80HdG), a typical of oxidative DNA damage, and decreased the bacterial cell survival rate. We could detect the generation of reactive oxygen species in P. melaninogenica after exposure to oxygen. UVA irradiation also increased 80HdG in the bacterium. On the other hand, such oxidative stress did not increase 80HdG in a facultative anaerobe. These findings suggest that P. melaninogenica is a suitable material to study the biological effects of oxidative stress, to evaluate antioxidants, and to study the effects of oxygen or reactive oxygen species on molecular evolution.

  • PDF

The Role of Active Oxygen on DNA Damage by Linoleic Acid Peroxidation Products (Linoleic acid 산화생성물(酸化生成物)의 DNA손상작용에 있어서의 활성산소종(活性酸素種)의 역할)

  • Kim, Seon-Bong;Kang, Jin-Hoon;Lee, Yong-Woo;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 1987
  • The present paper was carried out to investigate the effects of active oxygen radicals on the DNA damage by linoleic acid peroxidation by using active oxygen scavengers in a linoleic acid-DNA system. DNA was greatly damaged by linoleic acid peroxidation, and the DNA damage was inhibited by the addition of active oxygen scavengers. Among active oxygen scavengers tested, ${\alpha}-tocopherol$ and superoxide dismutase greatly inhibited the DNA damage, but catalase and tris (hydroxymethyl) aminomethane didn't show such effects. Accordingly, singlet oxygen and superoxide anion greatly affected to the DNA damage occurring during linoleic acid peroxidation, and hydrogen peroxide was shown to participate in DNA damage in the early stage of peroxidation. And, the DNA damage by active oxygen radicals was mainly induced in the early stage of linoleic acid peroxidation.

  • PDF

Molecular Links between Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiological Consequences: A Systematic Review of Hepatic Carcinogenesis

  • Mansoori, Abdul Anvesh;Jain, Subodh Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4803-4812
    • /
    • 2015
  • Chronic alcohol and tobacco abuse plays a crucial role in the development of different liver associated disorders. Intake promotes the generation of reactive oxygen species within hepatic cells exposing their DNA to continuous oxidative stress which finally leads to DNA damage. However in response to such damage an entangled protective repair machinery comprising different repair proteins like ATM, ATR, H2AX, MRN complex becomes activated. Under abnormal conditions the excessive reactive oxygen species generation results in genetic predisposition of various genes (as ADH, ALDH, CYP2E1, GSTT1, GSTP1 and GSTM1) involved in xenobiotic metabolic pathways, associated with susceptibility to different liver related diseases such as fibrosis, cirrhosis and hepatocellular carcinoma. There is increasing evidence that the inflammatory process is inherently associated with many different cancer types, including hepatocellular carcinomas. The generated reactive oxygen species can also activate or repress epigenetic elements such as chromatin remodeling, non-coding RNAs (micro-RNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to various disorders. The present review provides comprehensive knowledge of different molecular mechanisms involved in gene polymorphism and their possible association with alcohol and tobacco consumption. The article also showcases the necessity of identifying novel diagnostic biomarkers for early cancer risk assessment among alcohol and tobacco users.

Protective Effect of Fisetin (3,7,3',4'-Tetrahydroxyflavone) against γ-Irradiation-Induced Oxidative Stress and Cell Damage

  • Piao, Mei Jing;Kim, Ki Cheon;Chae, Sungwook;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.210-215
    • /
    • 2013
  • Ionizing radiation can induce cellular oxidative stress through the generation of reactive oxygen species, resulting in cell damage and cell death. The aim of this study was to determine whether the antioxidant effects of the flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) included the radioprotection of cells exposed to ${\gamma}$-irradiation. Fisetin reduced the levels of intracellular reactive oxygen species generated by ${\gamma}$-irradiation and thereby protected cells against ${\gamma}$-irradiation-induced membrane lipid peroxidation, DNA damage, and protein carbonylation. In addition, fisetin maintained the viability of irradiated cells by partially inhibiting ${\gamma}$-irradiation-induced apoptosis and restoring mitochondrial membrane potential. These effects suggest that the cellular protective effects of fisetin against ${\gamma}$-irradiation are mainly due to its inhibition of reactive oxygen species generation.

Role of Active Oxygens on DNA Damage by Low Molecular Carbonyl Compounds Derived from Maillard Reaction (Maillard 반응에서 유래되는 저분자 Carbonyl 화합물의 DNA손상작용에 대한 활성산소종의 역할)

  • 김선봉;박성준;강진훈;변한석;박영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.565-570
    • /
    • 1990
  • The role of the active oxygens on plasmid DNA damage by carbonyl compounds derived from Maillard reaction was investigated. Plasmid DNA extracted from E. coli Hb1O1 was reacted with carbonyl compounds, such as glyoxal, methyl glyoxal, dihydroxyacetone, diacetyl, glyceraldehyde, glycolaldehyde and furfural with and without the active oxygen scavengers at 37$^{\circ}C$ for 6 hours, and then the degree of damage was determined by using 1 % agarose gel electro-phoresis. All of the carbonyl compounds except furfural caused to damage of DNA. Among these, glyoxal, methyl glyoxal and dihydroxyacetone markedly induced the damage of DNA. On the other hand, the DNA damage by the carbonyl compounds was greatly inhibited by catalase, superoxide dismutase and $\alpha$-tocopherol it is considered that the damage of DNA is due to active oxygens, such as singlet oxygen, hydrogen peroxide and superoxide anion generated during the autoxidation of carbonyl compounds.

  • PDF

DNA Damage of Lipid Oxidation Products and Its Inhibition Mechanism (지질산화생성물의 DNA손상작용 및 그 억제기구)

  • KIM Seon-Bong;KANG Jin-Hoon;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.419-430
    • /
    • 1987
  • The damage of plasmid DNA by lipid peroxidation and its inhibition were investigated through the model system of DNA and linoleic acid at $37^{\circ}C$. The degree of DNA damage increased in proportion to the increase of concentration and peroxidation of linoleic acid. DNA damage induced from linoleic acid peroxidation was greatly inhibited by the addition of active oxygen scavengers, especially, singlet of oxygen scavenge$(\alpha-tocopherol,\;cysteine)$ and superoxide anion scavenger(superoxide dismutase, ascorbic acid) in reaction system. These active oxygens, such as superoxide anion and hydrogen peroxide were rapidly generated in the early stage of peroxidation (POV below 100 mg/kg) and also scanvenged by the addition of superoxide dismutase and catalase, respectively. Hydroperoxide isolated from autoxidised linoleic acid showed DNA damage. Hydroperoxide induced-DNA damage was not inhibited by active oxygen scavengers. Lipid oxidation products, malonaldehyde and hexanal, also influenced on the DNA damage. Accordingly, it is speculated that DNA damage by lipid oxidation products is due to active oxygens such as singlet oxygen and superoxide anion formed in the early stage of peroxidation, direct action of hydroperoxide and formation of low molecular carbonyl compound-DNA complex. Furthermore, DNA damage induced by lipid peroxidation was remarkably inhibited by the addition of active oxygen scavengers and natural antioxidative fractions extracted from garlic and ginger. These antioxidative fractions also suppressed the generation of active orygens and linoleic acid oxidation. It is assumed that the inhibition of DNA damage by garlic and ginger extracts is due to the scavenging effect of active oxygens and the inhibition of hydroperoxide and oxidation products formation.

  • PDF

DNA Damage Protection and Anti-inflammatory Activity of Different Solvent Fractions from Aruncus dioicus var. kamtschaticus

  • Zhang, Qin;Kim, Hye-Young
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.714-719
    • /
    • 2014
  • This study investigated DNA damage protection and anti-inflammatory activity of different solvent fractions from Aruncus dioicus var. kamtschaticus (A. dioicus) aerial parts water extract. As for DNA damage protection, distilled water ($H_2O$) fraction displayed the most powerful protection for DNA damage at a concentration of 1 mg/ml. As for anti-inflammatory activity, dichloromethane ($CH_2Cl_2$) fraction exhibited the highest NO inhibition activity, ranging from 61% to 19% ($10-40{\mu}g/ml$). Furthermore, the levels of pro-inflammatory cytokines mRNA expressions and intracellular reactive oxygen species (ROS) were employed to verify the anti-inflammatory activity of the $CH_2Cl_2$ fraction on further researches. It could be concluded that A. dioicus had a significantly effect of DNA damage protection and anti-inflammatory activity which also as an essential edible vegetable and medicinal species.