Journal of Korean Society of Forest Science (한국산림과학회지)
- Volume 84 Issue 1
- /
- Pages.63-70
- /
- 1995
- /
- 2586-6613(pISSN)
- /
- 2586-6621(eISSN)
Performance Analysis of Neural Network on Determining The Optimal Stand Management Regimes
임분의 적정 시업체계분석을 위한 Neural Network 기법의 적용성 검토
- Chung, Joo Sang (Seoul National University) ;
- Roise, Joseph P. (North Carolina State University)
- 정주상 (서울대학교 산림자원학과) ;
- Received : 1994.11.27
- Published : 1995.03.31
Abstract
This paper discusses applications of neural network to stand stocking control problems. The scope of this research was to develop a neural network model for finding optimal stand management regimes and examining the performance of the model for field application. Performance was analyzed in consideration of the number of training examples and structural aspects of neural network. Research on network performance was based on extensive optimization studies for pure longleaf pine(Pinus palustris) stands. For experimental purposes. an existing nonlinear even-aged stand optimization model with a whole-stand growth and yield simulator was used to generate data samples required for the performance analysis.
이 논문에서는 neural network기법에 의해 소규모 임분의 시업계획을 분석하는 방법과 적용성을 평가하였다. 이를 위해서 적정한 임분시업체계를 계산하기 위한 neural network 모델을 개발하고, neural network의 구조체계와 network을 교육시키기 위해 요구되는 자료량의 측면에서 적용성을 검토하였다. 연구목적상 모델의 교육 및 비교분석에 요구되는 적정 시업체계에 대한 자료는 기존의 비선형 시업체계분석모델을 이용하였다. 이 시업체계 분석모델은 동령급 구조의 긴잎 소나무(Pinus palustris) 단순림의 적정시업체계를 분석하는 모델로서 전림수확생장함수에 의해 임분의 생장이 예측되는 모델이다. neural network 모델의 적용성 검토에 요구되는 분석자료들은 이 비선형 시업체계분석모델에 의해 제시된 긴잎소나무 임분의 적정 시업체제분석 결과들을 이용하였다.
Keywords