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Performance Analysis of Neural Network on Determining
The Optimal Stand Management Regimes'*
Joo sang Chung? and Joseph P. Roise®

ABSTRACT

This paper discusses applications of neural network to stand stocking control problems. The scope of this
research was to develop a neural network model for finding optimal stand management regimes and examining
the performance of the model for field application. Performance was analyzed in consideration of the number
of training examples and structural aspects of neural network. Research on network performance was based
on extensive optimization studies for pure longleaf pine!Pinus palustris) stands. For experimental purposes,
an existing nonlinear even-aged stand optimization model with a whole-stand growth and yield simulator was

used to generate data samples required for the performance analysis.
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INTRODUCTION

During the last three decades, various mathemati-
cal programming approaches have been proposed as
decision-making tools for forest stand management,
These approaches overcome some of the limitations
of conventional silvicultural approaches by finding
optimal stand management regimes that consider
noth biological and financial elements,

However, an optimization model with a compre-
nensive stand management simulator also has short-
comings as far as use in the field is concerned.
Usually forest stand management problems include a
number of natural and artificial features that are
determined by the management objectives and the
current forest stand status. The dynamic nature of
stand structure adds to complexity in determining
which stand management strategy should be selected
‘rom a number of available alternatives.

As a result, optimization models were limited in
their use to specific stand characteristics or stand
management objectives. In addition, it requires a
large amount of computation and very high comput-
ing costs for complicated problems despite current
advances in mathematical programming technology.
This situation results in a need to find an inexpensive
and easy-to-use method which can be applicable to a
broad range of forest conditions and management
objectives.

Because of the complexity and nonlinear patterns
in forest stand management problems, conventional
inference techniques based on linear decision rules
will probably not provide an efficient tool. Neural
networks, a recently resurging technology, may
have the potential to solve such complex problems.
Neural networks, known for their simplicity and
outstanding performance in linear or nonlinear pat-
tern classification, may be preferable to conven-
tional methods(Lippmann, 1987).

The scope of this research was limited to develop-
ing a neural network model for finding optimal stand
management regimes and examining the perfor-
mance of the model for field applicability in terms of
computational efficiency and the generalization
capability of neural network through a case study.

NEURAL NETWORK

A neural network is an information processing
technique, the structure of which is based on neuron
systems such as found in a brain. The attempt to
simulate biological computation was pioneered by
McCulloch and Pitts(1943). Recently this method
has been increasingly used in many fields of applied
science.

The architecture of a neural network is shown in
Fig. 1. The network is made of processing elements
or nodes. A set of nodes composes a layer, which is
connected to other adjacent layer(s). Network is
composed of 3 types of layers: the input buffer
through which a set of input data is presented, the
output layer through which the output of process is
presented, and the in-between layer(s) referred to as
hidden layer(s) .

The processing unit(Fig. 2, is analogous to a

Input  Input Beffer Output Layer  Output

Hidden Layers

Fig. 1. A theoretical structure of the neural net-
work used to estimate values of dependent
variables, x$ and x3, as a function of in-
dependent variables, @, a. and as.

Transfer
Function
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Fig. 2. A processing element j in layer S of a typi-
cal neura! network showing connection
weights, and summation and transfer func-
tions.
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biological neuron. It is interconnected to a set of
other processing units through input and output
paths. Each processing unit has functions of simple
summation and activation. Input values, X§! (i=0,
1, -+, NJ, received through input paths from a set of
otaer processing units are combined by summation
and the combined value, net$ is activated for the
subsequent process by a transfer function, f(net$) .
The output paths are connected to the input paths of
a set of processing units in the next layer. Connec-
tions are not allowed within a layer or from a higher
t0 a lower layer. As a value passes between the two
connected processing units i and j, the input value is
weighted by connection weight, w;, which is analo-
Zous to the synaptic strength of a neural connection,

MATERIALS AND METHODS

Even-aged Lognleaf Pine Stand Management
Problem

The stand management problem is to estimate the
optimal SEV and treatment prescriptions for both
rirnber and pine straw production in longleaf pine
stands. Even though industrial management of
soathern pine forests usually requires a short rota-
zicn of less than 50 years, a much longer rotation of
110 years is used in this study to accommodate red
~cockaded woodpecker habitats. This long rotation
for red-cockaded woodpecker habitat can be eco-

nomically justified by producing longleaf pine straw
as well as timber (Roise et. al.. 1991). The manage-
ment plan is assumed to use a three-cut shelterwood
method. The control variables are thinning timing
and intensity. Intensive site treatments are also in-
cluded to control litter, grasses, hardwood and
brown spot disease. The financial and production
data used in optimization studies are shown in Table
1.

With this problem, networks are designed to infer
the SEV and thinning regimes including the timing
and intensity by the percent basal area as a function
of site index and rotation. Thus, two input nodes
(site index, rotation) and three output nodes SEV,
thin time, thin intensity; are required to construct a

network .

Optimization Model

To generate data sets required for the analysis, we
used a nonlinear programming stand-management
optimization mode! developed by Roise, Chung and
Lancia(1991). The optimization model solves for
thinning regimes in intensively managed longleaf
pine stands which produce both timber and pine
straw. In the model, both timber growth and vield
and pine straw production are predicted by a whole
-stand simulator.

Table 1. Financial and production data used in the analysis of longleaf pine shelterwood systems.

(1} Annual interest rate 4%

(2, Cost per unit volume

Sawtimber Pulpwood
Stumpage $205/MBF $43/cord
Logging $0.08/ft? $0.03,ft°
Transport. $0.02/1t® $0.03.ft!
(3} Treatment data per unit area
cost Execution times
Site preparation $60/acre Year 0
Burn $15/acre Year 3, 6 and after thin
Chemical treatment $9/acre Every 10 vears
{4} Pine straw data
Market price $3.25/bale
Baling cost $1.70/bale

Weight
Raking efficiency
Raking frequency

62 pounds/bale

80% of needle production is recovered
Every other year starting at age 20
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Procedures of Neural Network Analysis

The procedures used here for neural network anal-

ysis of stand management consist of three parts :
extensive optimization studies, neural network
training and performance analysis of the trained
network (Fig. 3). The extensive optimization
studies provide knowledge for the network to learn.
The network can absorb knowledge through
repeated training proceddres. Then the performance
of the trained network for future use can be assessed
statistically. The procedures are described as fol-
lows.

Optimal stand treatment regimes are determined
by an optimization model. The input(initial stand
condirions) and output {optimal prescriptions) of the
optimization model form an appropriate training set
for a network model, and a verification set to exam-
ine the generalization capability of the network
model (top block in Fig. 3!.

In Fig. 3, the T stand data sets are divided into
two categories . the training set and the verification
set. The training set is the neural network data

containing @ priori knowledge on optimal stand

Optimization
Network Tra:ning Set I Verification Set,
I
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(il 2o h) i %
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Connection Weights
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: Neural Network
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Fig. 3. Procedures to implement the neural net-

work analysis.

management prescriptions. The verification set is
composed of other network data to assess the neural
network performance. The two independent samples
are needed to train the network and to asses the
performance of the trained network. A certain num-
ber of stands, h, among T are randomly chosen and
assigned to the verification set. Each input vector
Xii-12..m 1S composed of initial stand data. The
optimization mode! produces optimal prescription
vector Y* when input vector X, is presented to the
model.

During the network training session, both Xi and
Yi*(i=1,2,--,h) form an input set which is sent to
the network. By feeding all these training sets se-
quentially, the untrained network becomes knowl-
edgeable on all patterns contained in the entire train-
ing set. This knowledge is represented by connection
weights in the network. The procedures are illus-
trated in the middle of Fig. 3.

This learning is obtained by means of the back-
propagation learning algorithm. When input vector
X, or pattern i is presented to the input buffer, this
input is processed parallel in a forward direction by
sequentially connected nodes in the network. Each
connection between nodes contains the past experi-
ence obtained during the training process in the form
of real-valued weights. The weighted inputs from all
nodes in the preceding layer, via input paths, go into
a simple summation function. Activated by these
summed inputs, a sigmoidal function in each node
transforms the inputs into the proper magnitude of
output which is transferred (fired) to all nodes in the
next layer. The final outputs from the output nodes
form an output vectob Y, which is an estimate of
At each

output node, the error derivative or error signal is

the true optimal prescription vector Y.*.

propagated backwards to the preceding nodes and in
the process used to adjust each connection weight.
This error signal is used to adjust the weights
involved in the node connections. The same back-
propagation is repeated at each level until the input
buffer is reached. When the input buffer is reached,
a new training example, X,,,, enters into the system
and the same forward and backward procedures are
repeated until all the patterns in the training set
produce their output within a predefined tolerance.
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Once the predefined tolerance is reached for all the
the

model has a certain degree of generalization capabil-

craining examples presented to the network,

ity depending upon the complexity of actual pattern
classification boundaries and the amount of network
lezrning. The trained network can be utilized to
derermine inference, Y;, on optimal stand manage-
ij=h+1,h=2,-, T!, by applv-
ing new input data X;, (j=h-1,h~-2,---, T!, shown
at the bottom of Fig. 3.

ment regimes Y;*.

RESULTS AND DISCUSSIONS

The generalization capability of a trained network
can be defined as the ability of a trained network to
infer unknown optimal management regimes for a
specific stand from past experience of learning dur-
Fig. 4

neural networks make inferences on optimal man-

ing training sessions. illustrate how well
agement regimes as a function of the number of
training examples used to train the network. It
contains three types of graphs for the multivariate
stand stocking control problem, of which dependent
variables are thinning timing{4a), percent thinning
intensity for longleaf pine(4b), and the SEV (4c)
when the rotation equals 110 years. In this Fig, the
solid line curves represent true optimal solutions.
and other scattered plots represent inferred values by
retworks. The trends of the true optimal stand
management regimes for longleaf pine stand man-
agement to protect red-cockaded woodpecker hab-
irats include a parabolic SEV curve(Fig. 4c¢) and
two nonconvex thinning regime curves(Fig. 4a and 4
b,

In Fig. 4(c!, the networks provide good guesses
for the optimal SEV after being trained with three of
four examples. However, when the curves of the
true solutions show trends with broken linesias illus-
trated in Fig. 4a and 4b), the additional information
gained from more than four examples results in even
better inferences. Eventually, the neural networks
get saturated with information, and learning more
examples does not result in better inferences(Fig. 4
¢; . A guideline to determine the size of a training set
was not found in the literaturc. Thus, the question

of how much learning is optimal for a specific prob-
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index (rotation=110 years) . The dependent
variables are (a)the stand age at thinning,
(b)the percent basal area thinning inten-
sity, and (c)the soil expectation value.
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Table 2. Computation time required do train two-layer networks and quality of estimations as a function of
the number of training examples. (NHN and NEX represent the number of hidden nodes per hidden
layer and examples, respectively . c.p.u. is the central processing unit time in seconds.)

2 Confidence Interval
NHN NEX c.p.u. Timing Inventory SEV
30 2 4 (1 0.40,0.70) ( 0.50,0.86) ( 0.65,0.90)
30 3 56 ( 0.25,0.55) (0.32,0.63) (0.37,0.68)
30 5 116 ( 0.18,0.47) ( 0.06,0.29) (-0.02,0.12)
40 40 65, 954 (-0.02,0.07) (-0.01,0.16) (-0.02,0.12)
Average Distance % Freq. of Maiches
[0 e e
Rt e e T T
0.20 ¢ :
] g0 !
H
i
0.15 /n'
60’
0.10 4
40 -
0.05 1
] o o a 20 -,*
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Fig. 5. The average errordistance, as a function of Number oFTr:u'ning Examples
the number of training examples, in vector Age 3t Thin T % T dacensiy

space from the true optimal point to the
estimated optimal point.

lem is a fruitful area for future research.

Fcr the multivariate problem, the average Eu-
clidean distance from an estimated point, which
represents a vector of inferred solutions, to a true
optimal point is a measure of the error in vector
space. Fig. 5 illustrates the average error distance
as a function of the number of training examples. In
the Fig., the average vector distance was calculated
using error values scaled to a range of (0, 1 to unify
the different measurement-units of the variables.
Each variable was linearly scaled using the upper
and lower boundary values in the list of raw data. As
shown in Fig. 5, the generalization capability of a
trained network is sensitive to the number of training
examples for the longleaf pine stand problem. After
training with twenty examples for the problem, the
networks do not provide significantly better infer-
ences, which indicates saturation of the network
information storage capacity.

-=x- STV

Fig. 6. The percent successful matches as a func-
tion of the number of training examples.

Fig. 6 illustrates the percent frequency of close
matches between inferences and true solutions. It is
a direct measure of the networks’ capability to infer
unknown optimal stand management regimes. The
output of a network is considered a close match if
the value of each dependent variable is within a
margin of 10% of the correct values. Notice the
rapid learning rate with a small number of training
examples for all variables.

The convergence time required to train each net-
work is another measure of neural network perfor-
mance. We measured the computing time by running
a commercial neural network software using 12 Mhz
micro-computers. The convergence time is not a
consistent measure of the computational efficiency
because it varies according to the training samples
chosen. Nonetheless, the convergence time shown in
CPU column of Table 2 indicates a very sensitive
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Table 3. The c.p.u. time bequired to train single-hidden-layer networks with a different number of hidden

nodes when NEX =10,

Confidence interval

NHN c.p.u. Timing Intensity L SEV
2 378 (0.16,0.44) £0.02,0.23} 0 0.01,0.19
4 216 (0.16,0.44) 00.02,0.23 £ 0.01,0.19
10 674 (0.16,0.44) (0.06,0.29 (-0.01,0.16"
30 1, 352 (0.16,0.44) (-0.01,0.16; -0.02,0.07

Table 4. Computation time required to train networks as a function of the number of hidden layers and the

number of training examples.

NEX NHL NHN TNC c.p.u Time Ratio

3 1 50 250 77 -
3 2 14 266 150 0.51
5 1 50 250 87 -
5 2 14 266 217 (.40

10 1 50 250 1,972 :

10 2 14 266 2,155 0.92

20 1 50 250 6. 322

20 2 14 266 3,742 1.69

response to the change in the number of training
The

increases in the computing time as a function of the

examples. Table shows sharp curvilinear
number of training examples.

In addition, the last three columns in the Table
show the tendency for confidence intervals to narrow
as the number of training examples increases. Each
confidence interval represents an estimate with 95%
confidence of a population mean for pl-p2, where pl
and p2 are approximated by point estimates for the
percent success, respectively. The above discussions
were based on performance of a fixed structure two
-layer neural network.

What would be the effect on overall neural net-
work performance if network structure changed ?
To answer this question, we changed the number of
hidden layers and the number of hidden nodes sepa-
rately, varying the network structures. To measure
the effect of changing the number of hidden nodes,
the c.p.u. time required to train a series of single
-laver neural networks with a fixed number of train-
ing examples{NEX =10) and the quality of solutions
for verification data sets were observed.

The results are shown as a function of the number
of hidden nodes(NHN) in Table 3. In the Table, the
c.p.u. time is very sensitive to changes in the num-
ber of hidden nodes. The results also indicate there

is an optimal network size which minimizes the
needed training time for a given neural network
problem. However, the optimal number of hidden
nodes seems to depend upon the number of dependent
and independent variables of the neural network
problem and the complexity of patterns presented to
the network. There was little evidence, in the the
literature searched for this study. that the optimal
network structure for a certain neural network for-
mulation can be determined without a series of
experiments like the ones shown above.

The results shown in Table 3 also indicate that the
quality of neural network solutions is rarely affected
by the changes in network structure. Instead. from
the results shown in Table 2 and Table 3, it can be
concluded that the accuracy of neural network solu-
rions is definitely affected by the number of training
examples rather than network structures.

To investigate the effect of changing the nurnber
of hidden layers on computing time, two networks,
single hidden-layer and two-hidden-layer, were
built(Table 4) . The number of hidden nodes for each
hidden layer was determined for each competing pair
of networks to have approximately the same number
Then,
networks were trained using the same training exam-

of node connections(TNC) . both types of

ples. For comparison purposes, the c¢.p.u. time
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needed to train each network is displayed in Table 4
as a function of the number of training examples.

To compare the needed training time between the
different number of hidden lavers in the above
Table, the difference is expressed as the ratio of
time, which is a ratio of the time required to train a
single-hidden-layer network over the time needed to
trair. a two-hidden-layer network. The ratio of time
changes as a function of the number of training
exarnples. As the number of training examples
increases, the values of the ratio of time increases.
In other words, a network with two hidden layers
performs more efficiently than one with a single
hidden layer when the number of training examples
is arbitrarily large. When th number of training
exarnples is small, the results indicates that a single
hidden layer is more efficient.

CONCLUSION

Neural networks were built to determine optimal
thinning timing and intensity, and the SEV as a
function of site index. Then, neural network perfor-
mance was measured in terms of the generalization
capability as a function of the number of training
examples and training time by varying network
structures.

For the multivariate problem of longleaf pine
shelterwood management the neural networks were
efficient in recognizing nonlinear trends of optimal
solutions with a small number of training examples.

The efficiency of neural network learning was
measured by the ¢.p.u. time needed for convergence
considering network structures and the number of
training examples. As the number of examples
increases, the convergence time increases
exponentially. When the number of training exam-
ples is small, single-hidden-layer networks converge
faster than two-hidden-layer networks. However,
the reverse is true when an arbitrarily large number
of training examples is used.

We suggest that further analysis of neural network
applications to obtain optimal stand management
prescriptions be undertaken. In this research, an
intensively-managed longleaf pine stand problem

was chosen for experimental purposes. This conclu-

sion can not be necessarily extended to more compli-

cated stand management problems, i.e. mixed hard-
wood stand problems of which solution patterns are
generally less discernible because of ecological com-
plexity of stand dynamics. Thus, a broader range of
case studies should be undertaken for future applica-
tions of the neural network in forestry. The neural
network approach is still in its developing stage and
seems to have potential in reducing computational
burden for finding optimal stand management

regimes.
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