Abstract
Generalized Multichannel Quantum Defect theory (MQDT) was implemented to the vibrational predissociation of triatomic van der Waals molecules in the previous paper [Bull. Korean Chem. Soc, 12, 228 (1991)]. Implementation was limited to the calculation of the scattering matrix. It is now extended to the calculation of the predissociation spectra and the final rotational distribution of the photofragment. The comparison of the results with those obtained by other methods, such as Golden-rule type calculation, infinite order sudden approximation (IOS), and close-coupling method, shows that the implementation is successful despite the fact that transition dipole moments show more energy dependence than other quantum defect parameters. Examination of the short-range channel basis functions shows that they resemble angle-like functions and provide the validity of the IOS approximation. Besides the validity of the latter, only a few angles are found to play the major role in photodissociation. In addition to the implementation of MQDT, more progress in MQDT itself is made and reported here.