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a-(-z+2^z-2t 一沧+2+z-2), 2z+z-), (59)

and g(z) is defined as

z+k^qz_k~<l
心沪v旋奇无二洌, (60)

If we differentiate both sides of Eq. (58), we obtain

f 席二;=SKfe)VC[«. (61)£> £/ \K L) ♦ q

If we make the coefficients of <|)^(2)of Eq. (61) zero, the 
following relations are obtained:

W研=/火近(技 T) c"],
£t

尸〕= —v缶二衣"I떠 f,

VR方=\/地%+D Q*. (62)

On the other hand, by the well known vector coupling theory, 
V/ECj妇 can be decomposed into irreducible products [V⑴ 

with the expansion coefficients giv은n by the Wig­
ner coefficients as follows:

v/口 】c普=IKq+g 이VWY*% 朝〉

=(i心小-ia+j)[gc [妇丄오烈. (63)

From Eqs. (62) and (63), we obtain Eq, (21).
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Generalized Multichannel Quantum Defect theory (MQDT) was implemented to the vibrational predissociation of triato­
mic van der Waals molecules in the previous paper [Bull. Korean Chem. Soc, 12, 228 (1991)1 Implementation was 
limited to the calculation of the scattering matrix. It is now extended to the calculation of the predissociation spectra 
and the final rotational distribution of the photofragment. The comparison of the results with those obtained by other 
methods, such as Golden-rule type calculation, infinite order sudden approximation (IOS), and close-coupling method, 
shows that the implementation is successful despite the fact that transition dipole moments show more energy depen­
dence than other quantum defect parameters. Examination of the short-range channel basis functions shows that 
they resemble angle-like functions and provide the validity of the IOS approximation. Besides the validity of the 
latter, only a few angles are found to play the major role in photodissociation. In addition to the implementation 
of MQDT, more progress in MQDT itself is made and reported here.

Introduction

Photodissociation provides a wealth of information on mo­
lecular dissociation dynamics, as it may be visualized as a 
half collision process. Traditionally the total dissociation 
cross sections as functions of the photon energies were mea­
sured. However, in an increasing number of recent experi­

ments, final state distributions of the photofragments have 
been measured. Such experiments were made possible by 
the availability of powerful light sources and by the develop­
ment of efficient detection methods like laser induced fluore­
scence or resonance enhanced multiphoton ionization, and 
so on. Reliable intermolecular potentials have been deduced 
from such sophisticated experimental data. Details of photo­
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dissociation dynamics are now available for several systems.1
However, studies on indirect photodissociation, also called 

as predissociation, were hampered by lack of computational 
and interpretative tools. Indirect photodissociation spectra 
are characterized by their sharp and complicated shapes in 
contrast to the broad and structureless ones of direct photo­
dissociation spectra. Comparing to the direct photodissocia­
tion, indirect photodissociation requires a lot of computatio­
nal time because scattering equations should be solved for 
a lot of energy mesh points in order not to miss resonances. 
Classical trajectory calculations are known to be much much 
faster than and as equally accurate as close-coupling calcula­
tions in direct photodissociation. But they turn out to have 
problems in use in indirect photodissociation as it is hard 
for particles to escape once they are captured inside quasi­
bound states.

In interpreting the general shapes of the absorption spec­
tra or of final state distribution용 of the direct processes, ref­
lection principles provide a convenient tool, as greatly em­
phasized by Schinke.2 According to reflection principles, the 
shapes of the dissociation spectra or of the final state distri­
butions reflect the shapes of molecular wavefunctions before 
light absorption. The reflections are done on the mirrors 
whose shapes are determined by the Mso called* classical 
excitation functions of conjugate variables to the observables. 
3 Such reflection principles can only be applied to direct 
processes. They can not be applied to indirect processes. 
Indirect processes pose another problem when the calcula­
tions are tried. Classical trajectory method provides a fast­
route to calculations for direct processes. It is not an efficient 
one when indirect processes are involved as particles are 
hard to escape when they are captured inside the quasi-bound 
states. Direct close-coupling calculation suffers from the diffi­
culties in finding resonance positions.

On the other hand, a very powerful method, known as 
multichannel quantum defect theory (MQDT), has been 
known for a long time in photoionization field.4 MQDT is now 
established in atomic physics as one of the most powerful 
theories unifying treatments on bound and collision state 
calculations. It provides a unified treatment of bound and 
continuum wavefunctions by making use of analytic functions 
that can be analytically continued from bound to continuum 
regions and vice versa. It also provides the most general 
theory of resonance phenomena, describing the complicated 
resonance structures with a small number of energy insensi­
tive parameters. Accordingly, it not only simpliHes the ta옹k 
of describing the complicated resonance spectra but also yie­
lds great insight into the dynamics of photodissociation or 
inelastic processes.

In the previous work by the author,5 MQDT calculation 
using the generalized MQDT method proposed by Greene, 
Rau, and Fano6 was implemented with the replacement of 
the R-matrix procedure by the close-coupling algorithm. But 
the implementation was limited to the calculation of the scat­
tering matrix. It is now extended to the calculation of predis­
sociation spectra and final rotational distributions of photof­
ragments. As a model system, van der Waals molecules are 
chosen, since the computational time is shorter for their sys­
tem than those of other triatomic molecules because of their 
weak atom-diatomic interaction potentials. It is 지so a system 
for which true state to state measurements of intramolecular 

energy redistribution are available.
Section 2 gives a brief description of the MQDT theory. 

Many channel basis functions have been used in MQDT. 
Since descriptions on them and their relations have not been 
quite clear or extensive, Section 2 attempts to give more 
extensive descriptions on them. Section 3 describes the sys­
tem investigated in this paper. Calculational procedures are 
described in Section 4. Section 5 summarizes the results.

Theory

Partial photodissociation cross section 하 for the dissocia­
tion channel: is proportional to the frequency of the incident 
light and to the square of the modulus of the transition di­
pole moment given by

5)="听％): (1)

6cc 이 叩. (2)

*l仞 denotes the wavefunction of ihe dissociation channel 
i satisfying incoming wave boundary- conditions and p is the 
dipole moment operator. It is known that the dipole moment 
operator affects the photodissociation dynamics not much for 
the case of vibrational predissociation of van der Waals mo­
lecules and is taken here as a constant. Then the transition 
dipole moment is approximately proportional to the square 
of the overlap integral between the initial(normally ground 
state) and the final wavefunctions. The ground state wave 
function may be relatively easily obtained from the usual 
quantum chemical calculations. Final state wavefunctions be­
longing to the continuum region in case of the photodissocia­
tion are obtained by solving scattering equations. Calcula­
tions should be done for a lot of energy points as resonance 
peaks are very sharp and hard to detect accordingly. A lot 
of energy point calculations are avoided here by making use 
of multichannel quantum defect theory (MQDT).

MQDT separates the energy sensitive and insensitive parts 
of calculations which is mostly achieved by simply dividing 
the coordinate R along which dissociation takes place into 
inner and outer ranges so that all inelastic processes take 
place in the inner region. MQDT then utilizes the fact that 
most time consuming part of traditional close-coupling calcu­
lations comes from decoupling the close-coupling equations 
in the inner region of close-encounter where calculations 
are insensitive to the scattering energy and need to be done 
for coarse energy mesh points. Finer energy mesh point cal­
culations are needed only at the outer region where channels 
are decoupled and the remaining thing to be done is to make 
wavefunctions satisfy boundary conditions which is much ea­
sier than to decouple the close-coupling equations. The equa­
tions thus obtained, compatible with the boundary conditions, 
yield solutions of dynamic quantities which show complicated 
behaviors and abrupt changes as a function of energy. Such 
behaviors are caused by the presence of the singularities 
in the compatibility equations which are caused in turn by 
the presence of the closed channels.

In MQDT, coordinates R along which fragmentation takes 
place are divided into two regions RVR° and R〉R・ The 
matching radius Ro where log derivatives of the solutions 
at the inner and outer regions coincide, is usually taken 
so that all inelastic processes are included in the inner re­
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gion. In the outer space,motions in the different channel sta­
tes are decoupled. If standing wave channel basis functions 
% are considered, their radial wave function defined by 
为矿(R) for the i 사血mel state ◎

*，= 2@(3加/缶)， (3)
I

obey the ordinary second order differential equations and 
are given as linear combinations of regular and irregular 
solutions:

W,，gD)=Ze，(3)[/；(R)&,，F(R)K„，], R〉R> (4) 
I

ci)denotes collectively all the coordinates but R and is 
the real symmetric m가rix which differs from the usual K 
matrix in that its indices i and f run not only for open 
but also for closed chann이s.

The regular and irregular solutions /(7?) and gKR) normal­
ized per unit energy range have the asymptotic forms for 
the open channels as

(2m \V2ft(R) T (끄 ) sin(M+m),

/ \I/2
gi(R) T —彳 cos(W?+n), (5)

\ nz?i /

and for closed channels as

/(/?) t /尊(sin昭5 - cos曲

g,(人) — -x/^- (cosPA~V1R+sinPA 厂허， (6)

Since wavefunctions in the outer region given by Eq. (4) 
match inner ones at R°, all the complications of dynamical 
coupling in the inner region affect the motion of particles 
in outer region only through the values of K matrix ele­
ments. As interaction potentials are highly negative in the 
inner region, the kinetic energy of the illative motion obtain­
ed by subtracting the interacting potentials from photon 
energies is hardly affected by the relatively small variation 
of the photon energy as is true in the usual experiments. 
Thus complicated dynamics occurring in the inner region 
and accordingly the values of K matrix elements are negligib­
ly affected by the variation of the photon energy.

Though wavefunctions given by Eq. (4) are made to match 
inner ones at R& they do not satisfy the boundary conditions 
at the asymptotic region. The wavefunctions that satisfy the 
boundary conditions at the asymptotic region may be obtai­
ned by taking linear combinations of the standing wave chan­
nel basis functions and then by setting the exponentially 
rising terms zero. Wave functions then show resonance be­
havior. It takes much less time to make wave functions satis­
fy the boundary conditions than to decouple the close-coup- 
ling equations and to lessen the burden of fine energy mesh 
point calculations around sharp resonances accordingly. This 
design of MQDT makes full use of energy sensitive and 
insensitive nature of the scattering equations and is much 
superior to that of the direct method of solving close-coup- 
ling equations.

Now let us describe the process of applying the boundary 
conditions to the linear combinations of " Here let us fol­
low Fano and introduce “short range" channel basis func­

tions (will be labeled by a) which are just eigenfunctions 
of the real symmetric K matrix. The eigenvalues of K matrix 
are conveniently parameterized as tan 지如 where 卩a (or 자y) 

are called eigenquantum defects (eigenphaseshifts). If we de­
note the matrix made of eigenvectors of K as Ut the form 
of energy normalized short-range eigenchannel basis func­
tions is given by

% = 珥临 一 g(&)silU屮a], (7)
t

and their relation with the standing wave channel basis func­
tions 項i is obtained as

cosnpa. (8)

Let us now consider another energy normalized orthogonal 
channel basisfunctions Wp as the superpositions of Ta

驱P=Z*Kap, (9)
a

with the coefficients 4叩 so as to satisfy the boundary condi­
tions that the coefficients of the exponentially rising terms 
are zero at J?->oo and that all open channels have the identi­
cal phase tp. Because of the latter condition, % are eigen 
channel basis functions at the asymptotic region. Therefore, 
¥p's are eigenfunctions of the ordinary X or S matrix. Subs­
tituting Eqs, (5), (6) and (7) into (9) and applying the boun­
dary conditions, the following equations are obtained:

£，asin(& +자坛)4屮=0, i u 이osed (10)
a

^a^ZaCOSnpaAap- T/pCOSnip,

EjgaSim屮aAap=7%sin7r“，i e open (11)

Above equations can be transformed into the generalized 
eigenvalue equations

— taiUTTp^^jaAap, (12)
a a

with their m간rix elements

r UaSiiX&T끼ia), i w closed channel,
,a 1 UaSin까ia, i u open channel,

A =}0, i e closed channel,
,a I t7iacosnpa( i e open channel.

As described above, the time required to solve Eq. (12) 
for detecting resonances is much shorter than to solve close­
coupling equations. We also note that by the above procedure 
of MQDT, five energy-insensitive parameters 以,尚，and 
Uia in Eq. (5), (6) and (7) are disentangled as the only param­
eters needed to describe the complicated resonance pheno­
mena. [With one more parameter, transition dipole matrix 
elements 庆=(乎시同也) in ca옹e of photodissociation cross 
sections]. In the semiempirical application of MQDT, short­
range parameters |% and frame transformation matrix U are 
usually assumed a constant function of energy. The energy 
dependence of the remaining parameters i卞 and & is known 
analytically in case of Coulombic and dipole (attractive) field 
cases but should be obtained numerically for zero field case.

Now wavefunctions satisfying the appropriate boundary 
conditions can be obtained as a superposition of energy nor­
malized Yp. For example,satisfying the incoming wave 
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boundary conditions are given as

叩 (15)
p

with

Cp-(i)=i(T' % 厂海*띠. (16)

Since Tip is orthogonal, Cp~(i) is unitary.
Or, equivalently, it could be given in term of short range 

channel basis functions by

¥-仞=»「"思， (17)
a

with

4「但=妒2缶厂셰2為稣 (18)

When all the 사lannels are open, solutions of (12) can be 
obtained analytically and are given by

4*="'펴0Z"어'匕濟"다*，(when all channels open), (19) 
t

and satisfy orthogonality relation

£Aop&p=8매 (when all channels open). (20) 
p

If Aa~(i) denote Aa~(i) of Eq. (17) when all the channels 
open, they are given by

Aa~(i)=ie-^Ui^-^ (21)

and orthogonal to each other

J瓦-财厂0=毎 (22)
a

Using 瓦一仞，may be expanded as

瓦厂@=£(温<次 (23)
j

where the expansion coefficients are given by

瓦 m시(神顼시 (24)

Notice that i belongs to open channels as evident from Eq. 
(17) while j could belong to closed as well as open ones. 
If we substitute Eq. (21) into Eq. (11), we obtain

匕4叩=一讶“7% /"气 i e open (25) 
a

By substituting the above equations into Eq, (24),

(26) 
p

It is well known that Tip is an orthogonal real matrix. Then 
Gj becomes 8酋 when j is open (as we said above, i belongs 
to open channels). If j is clo옹ed, C” is given by

c尸岑為「幻歸检 (27)

where △卽 is deHned as

(28) 
p

At off resonances, APy becomes 6卽 for 0 and y belonging 
to open channels according to Eq. (20) and zero for 0 and 
Y belonging to closed channels. The latter holds in the fol­

lowing reason. At off-resonance, Eq. (10) and Eq. (11) are 
decoupled and 4枷 for a w closed, may be obtained with 
Eq. (10) alone. sin(Pi+pa) are far from zero at off-resonance 
and therefore the only sure way for Eq. (10) to h아d is for 
厶叫 to be zero.

Overall, Aa~(i) can be expanded into the orthogonal vectors 
Aa~G) as

4戒=瓦或+ y瓦—% 
yeaned py

=瓦-们+ y 瓦-”〈理I끼시密-莅〉三瓦2
/eclosed

+ z 瓦 (29)
/eaosed

d may be considered as the matrix elements of A in the 
basis set of 까 and have the following form:

莓瓦2・&F (30)

=Z(Z話/"(31) 
p

The above equation shows us the effect of closed channels 
to the photodissociation. AJ may be considered as the cou­
pling strength between the closed channel j and the open 
channels :. (We may consider Aa~(i) as the frame transforma­
tion matrix between short range channels I a> and the incom­
ing wave channels |:> while Uia as the one between |a> 
and the standing wave channels |i>.) If j belongs to open 
chann이& it is easy to show that becomes 財

If we consider two channel case where one channel is 
open and another closed, analytical solutions for Apy may 
be obtained and Aa~(i) becomes

4「＜。=瓦「3-内2质厂並+脸@으 广瓦P (32) 

where can be expanded as
이3

di dx dE tD dEff"1 n - " = 11 • , ‘
邓 dE dp ~ 2h dp (33)

around resonance, to is the time delayed by resonance and 
thus expected to be always positive and shows the resonance 
behaviors. Also for two channel case, we notice that

^A=p4a2=l + n-^|-. (34)

Numerical studies show that the above properties of A hold 
for more than two channel ca욚es, though analytical solutions 
such as the above are not available yet.

Let us summarize channel basis functions and their rela­
tions described so far. First, Table 3 shows all the channel 
basis and their asymptotic or decoupled forms. The table 
also shows whether they are energy normalized, whether 
closed channels are included in channel couplings. Figure 
1 diagrammatically shows where they are defined, and what 
are their characteristics. Are they defied in the asymptotic 
region or in the short-range region? Are they standing 
waves, incoming waves, or eigenchannels? It also exhibits 
various frame transformation matrices that connect two of 
them. Analytical forms of frame transformation matrices are
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Table 1. Parameters for the model intermolecular system A-B2

(a) Reduced mass between A and B2 
m=6756.8a.u.
(b) Morse potential parameter
Dab=0.0034 eV DCM = 0.00195 eV
oab^I.O a.u. Ocm=1.0 a.u.-1
Rab”)=6.82 a.u. Rcm히=6.65 a.u.
(c) van der Waals potential parameter
Ceo=0.75 eV (a.u.)-6
C62—0.119 eV (a.u.)-6
Cso= 1.58 eV (a.u.)-8
C&=0・8 eV (a.u.)-8

Table 2. Diatomic molecular parameters

vibrational frequency 0.0162 eV
rotational constant B 0.01758 meV
equilibrium bond length 乙 3.044 a.u.
reduced mass M 32576.6 a.u.

Table 3. Various 산lannel basis functions used in MQDT

basis 
functions

energy 
normalized

channels 
involved

decoupled or 
asymptotic form

% no open, closed £©佃)[魚?)如-gidV^KuQ
理a yes open, closed 2应>血))％a[Z(/?)8SJTPa

一 g,(R)sin 叩a]
% yes open 20血))

-^(Z?)sinnTp]
曹-何 yes open £冬血））、/舟础&"

-gi叮
理、 no open 財,佃）［魚?）&，一&価）&，］

standing outgoing 
wave wave 

(real) (photodissociation)

eigcnchannel

(elutic)

Figure 1. Diagrams showing the relations am이ig various chan­
nel basis functions.

Table 4. Various frame transfonnation matrices. zip is defined 
as %=£, W%cosE；p. is defined as 密何=£頌同"

unitarity analytical form or definition all channels 
open

um yes =2也而1자/%，f uia
no [t^zlapcosjrcp/cosnpa Sap

T,» yes J UipBap
yes 论-町,广"皿=2瓦5/0 论f赤厂大瞞

no 妒谕2雄滤F诵da
=瓦-似+ 2搭］』厂"&

讪 一‘阿加广햐岫

Zfp no |TiP( Ze open
—[(tanp-I-/0- 1AT1P, /eclosed

t/iaCOSTT Pa^ap

BF no ]&，， f Gopen
—[(tanp+K)~llQiir, f eclosed

时

summarized in Table 4. The ta비e also shows their forms 
when all the channels open, and whether they are unitary 
or not. R시ations among various frame transform간ion matri­
ces are shown in Table 5. The complexity of the relations 
arises from the fact that some frame transformation matrices 
are not unitary as shown in Table 4.

So far, we described how to obtain Hnal state wavefunc­
tions ^~(i) by MQDT. In MQDT, they are expressed in terms 
of short-range channel basis functions % by Eq. (17). Then, 
transition dipolemoment D~(i) may be expanded into

為=(35)
a a

where B)a is given by

= *加 (36)

System

Here we consider the system of vibrational predissocia­
tions of triatomic van der Waals molecules, identical to one 

Table 5. Relations among transfonnations between frames at asymptotic region and at short-range region. B,r~(I) is defined as 
5方用厂⑴

Aap Aa'(i) 2jp Br<!>

Aap 1 £Ucu t2Ip(COS7TCp/COSnga) — —
Aa~(1) £丄c建 — £'赤'LB,'-。 —

Zip £0a(COS 쟈la/cOSTTUpMap — 1 — »B段也
B厂⑴ — ^^/pCosnTpCp"w 1 —

B爬 — £al"aCOS 찌丄丫4决） Z/pCosm*板 t — 1
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of the authors previous work.5 Triatomic van der Waals 
molecules are restricted t)rare gas-homonuclear halogen 
diatomic molecules. Empirical potentials for them like NeCl2, 
HeCV are w이 1 established owing to the state-to-state mea­
surements available for them. The interaction potential be­
tween A and Bz in AB2 triatomic system used by Halberstadt 
et al.8 for NeCb system has the following form (a slightly 
modified form for HeCl2)

V(R, rt y)=Vm(R, K y), when RVR*,
V(R, rr Y)=KdW0 Y)+Wm一儿dw)厂師t曲叫 when R2R*,

(37)

in the Jacobi coordinates R, r, 丫 that denote the distance 
between A and the center of mass of B2, the bond distance 
of B2, and the angle between R and r, respectively.
r, y) and Kdw are given as

吹R, n y)=Dab 变{[eFBgT园。>—1了_1}2 (38)

i=]

+ 庆M{[厂心促T?CM。))一 口2_ 가2, (39)

KdwO?, Y)=-■攀一■씌L (40)
K ic

where is the distance between A and :rt B atom, R is 
same as above, and other parameters are constant that are 
adjusted to yield the best fit to the experimental values. 
Two Legendre terms are retained for C6(y) and C8(y), e.g.,

C6(y)=C6o+C6zP2(cosy). (41)

J?* i옹 chosen as the inflection point of the atom-atom Morse 
potentials and given by R* =RC^O) + ln2/acM. The parameters 
used in this paper are slightly different from those of Ref. 
8 and given in Table 1.

With this interaction potential, the Hamiltonian for the 
triatomic van der Waals molecules AB2 is given in the Jacobi 
coordinates by9

1 32 2. p
H~ — -- ----- & + -~2 + 9―«2 + V㈤ r> Y)+Hb〃)， (42)

2m 狎 2pr 2mR£

with

Hb") = - 圭 + Vb")， (43)

that denotes the vibrational Hamiltonian of B2. m and 卩 de­
note the reduced mass of A and the center of mass of B2 
and of B2, respectively; j, the angular momentum operator 
of B2; and 7, the orbital angular momentum operator of the 
relative motion of A and the center of mass of B》The values 
used for B2 are in Ta비 e 2.

The values of total angular momentum operator /— 
as is well known both experimentally and theoretically, do 
not affect the predissociation dynamics much and is set to 
zero hereafter. This simplifies the Hamiltonian as 7 can be 
set to equal to j.

When the wavefunctions V)(R, rt y) to the dissociation 
channel are expanded in base functions 丫) = (시

扩)匕0) for the rovibrational channel，' = {〃/} as

r( 丫)为侦), (44) 

the close-coupling equations are given as

塩 냐’"+鑫豚值)+衫,,”缶比依)=0, (45)

with

砂=2m[E-B丸+1)-(u+§)<d], (46)

and

=pysinyy)V(R r, 丫皿》0 y). (47)

In the practical calculations of Vf/ (R), the interaction poten­
tial is expanded into Legendre polynomials and then the 
angle integration is performed analytically to yield the for­
mula in terms of 3/ symbols.

The real symmetric K matrix in (4) is easily obtained by 
simply replacing exp (± ikiR) or sinA,2? and cos^,J? in the 
conventional close-coupling computer code with the energy 
normalized base pair/(2?) and The important difference 
between the close-coupling and the K matrix calculation is 
that the subindex i includes both open and closed channels 
for the latter while it includes only open channels for the 
former.

Calculation

In MQDT, a transition dipole moment to channel i given 
by Eq. (35). Da is the transition dipole moment to the short 
range channel a and is expected to be insensitive to energy. 
The abrupt change of D~(i) as a function of energy, then, 
derives from Aa~(i). Da is defined as the integral (WJ 卩]¥*). 
The ground state wavefunction is simply assumed to be Gau­
ssian functions of R and y here since the purpose of this 
work is in implementing MQDT to photodissociation, and 
not in calculating the transition dipole moment as exactly 
as possible.

K y)={expL - aR(R - Re)2l + exp[ - aR(R+7?e)2]}

X expL ~afy 一 %)勺 <r|n = 0>
三 d>R(R)aj(Y)〈끼 花 = 0> (48)

OT(y) is expanded into the spherical harmonic옹 in order to 
utilize the latter's orthonormal property for integrating over 
V-

Q(Y)= ZZ須Y，°) (49)
}

In order to obtain 业，the close-coupling equations (45) 
are solved from R=0 to and their solutions are linear­
ly combined to make the boundary conditions given by Eq. 
(4) satisfied. Then % are obtained as eigenvectors of the 
K matrix. In order to apply the boundary conditions (4), a 
regular and irregular base pair in R>R° should be prepared 
at first. The pair may be obtained analytically for Coulomb 
and dipole fields, but should be calculated numerically for 
the zero field (where potential decreases faster than 1/J?2 
as a function of &). The present system belongs to the zero 
fi이d case since the long-range part of the intermolecular 
potential of the present van der Waals system decreases as 
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1/&6 as in Eq. (40). Though the regular and irregular base 
pair is defined only at the range of R>R& its calculation 
needs to start from k=0, since the regularity of the solution 
is determined by its behavior at the origin. In order to calcu­
late it at RvRo, the decoupled potentials at R>R° needs to 
be extrapolated to R<Ro where they are not decoupled. Ac­
tually the detailed forms of the potentials at R〈R° should 
not be important, because the base pairs have no meaning 
there. Let us call the arbitrarily extrapolated potential a refe­
rence potential. The choice of the reference potential should 
not affect the final result but changes the values of quantum 
defect parameters (qdt) t] and p. Two extrapolations using 
adiabatic and diabatic potentials may be well defined and 
can be utilized for any system without arbitrariness as re­
ference potentials. Diabatic and adiabatic potentials connect­
ed to {vj\ fragmentation channels are defined as

*晶雄?)=岭刼缶) + 쎴* +Bj(j+ D+(a+*)3

VM(R)=W)+씡莫 +8■而+l)+(u+*3 (50)

where v^(R) are the eigenvalues of the hermitian matrix 
However, for the system of interest, these extrapo­

lations can not be applied since the reference potentials from 
these extrapolations may have potential minimum higher 
than the predissociation resonance energies. As particles 
with negative kinetic energy in all space can not exist, /(7?) 
and gi(R) pair cannot be defined under such reference poten­
tials. But the presence of resonance energies indicates that 
particles can still have positive kinetic energies in such reso­
nance energies. The drawback of the above potentials is that 
they are averaged over angles. The potential minimum along 
the trough of V(R, rt y-90°) is lower than the resonance 
energies as it should be. The reference potential can 
thus be taken as:

匕皿)= 拠짜)+ 0" 心)讎: (51)

with

Vios(&)三㈤ L，Ye)+‘*影 +切(7사+ 如。. (52)

p is chosen to ensure the smooth connection at R=R누(R* = 4 
A and p=25 are used).

Once reference potentials are chosen, the base pair ft(R) 
and gt(R) can be obtained by solving the ordinary differential 
equations which are obtained from (45) by extrapolating the 
decoupled (identical to vvj(R) at R>RG) to the refer­
ence pot&itials at R<R)[see Eq. (50)]. Their calcul가ion 
in MQDT may cause trou비e in two respects. First, irregular 
solutions 务(&) are singular at the origin. Second, MQDT 
requires them not only at the positive energies but also at 
the negative energies where the base pair is singular.

Milne method recommended in Ref. 6 is shown to be sta­
ble enough even in the deeply classically forbidden region 
to overcome these difficulties. This stability derives from 
the fact that it calculates the more slowly varying functions 
of R, that is, amplitudes and phases of the regular and irre­
gular functions than the wavefunctions themselves.

In the Milne procedure, the base pair is replaced with

and 0r(7?) by the transformation

/狄)=、4成臨哺缶)，

gi(R) = - v应U(&)cos4(R). (53)
n

for both positive and negative energies.
is given in terms of a, by

= (54)

The function a itself satisfies the ordinary second order dif­
ferential equations

禦Q +血被血缶)=a「3缶) (55)

with

媚(R) = 2m[E—Ke 演)丄 (56)

The boundary conditions for a,(J?) are chosen so as to make 
the variation of 0,(7?) as a function of R as small as possible, 
as it leads to the minimization of the numerical error. At 
the positive energies, such boundary conditions are obtained 
as

a，(R)f&T,2, 4礬 T 써%=0, at Rf (57) 
aK aK

At the negative energies, applying the same kind of bounda­
ry conditions at the potential minimum instead of at the as­
ymptotic region, nam이y

a演沪샤!，T,2 虫礬 TO (58)
uK

has been proposed as a means of reducing the oscillations 
in a,(7?) and 0,(/?) as much as possible. The quantum defect 
parameter & is identified in the Milne procedure as

片卩<讴注庆. (59)

The second order equation (55) and the close-coupling equa­
tion (45) are solved by the De Vogelaere algorithm10 which 
is particula뢰y suitable for the integration of (59) by a Simp­
son formula, since it generates not only at the propaga­
tion mesh points but also at their middle points.

With the solutions 对一⑴ of close-coupling equation (45) 
and the regular and irregular base pair /(7?) and gAR) ob­
tained by Milne method, short-range channel basis functions 
are given with the explicit vib-rotational quantum number 
notations of i and 矿 by

- ( »乎所0订qCOSJTKa
I[〈시"〉0)£必，，板CR)〔사;aCOS叩a],

) when R<Rq,

I 2/〈小0)0齐，a[7W(&)COS지

\ -务 7(尸)sin 짜&打,

when R>Ro.
(60)

Then Da is calculated by
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\{J。％•海"狀

+ £?(5(R)cos자虹 一务®sim屮混晾砌时 (61)

where nM is the vibrational quantum number of the ground 
state. The value of〈处‘I 卩I力”〉is taken arbitrarily.

In order to calculate transition dipole moment D~(i)t in 
addition to I爲 we need자 or Bia which are in turn ob­
tained by solving MQDT Equations (12). The equations are 
the generalized eigenvalue equations of the form Ax~\Bxt 
and are solved by so called QZ algorithm which is equivalent 
to the QR algorithm of B1 A but the inver욚e of B is never 
explicitly calculated. QZ algorithm is especially useful to our 
problem since B, denoted as A here, is singular and its in­
verse can not be calculated.11 A is singular since the rows 
corresponding to closed channels are zero. The code in C 
for the generalized eigenvalue equation was not available 
and was written by converting a Fortran code.

Though solving MQDT equations is not much time consum­
ing, it is still very annoying to solve it for a broad energy 
range since we have to change the magnitudes of intervals 
around resonances in order not to miss them and to make 
smooth spectra around resonances. In order to avoid this 
inconveniences, we adapt the variable step sizes in energy 
variation. If the maximum variations of tp in the next energy 
mesh point are smaller than some value, we increase the 
energy step size by some value, say 1.4. If rp vary too much 
in one step move, we decrease the step size by half and 
do not accept the new tp and other quantities at that energy 
mesh point. Such values are not discarded but are stored 
in a stack for later steps. Keeping the size of variation옹 of 
tp for each step smaller than some value is not sufficient 
to ensure the smooth variation of rp at each step. In order 
to ensure the smooth variation of rp at each step, we have 
to discard the energy point if the first derivatives of rp with 
respect to E vary too rapidly. All these points are implemen­
ted in the computer code.

Results of MQDT calculations are compared with those 
of three other methods, namely, close coupling calculation, 
Golden-rule type calculation and infinite order sudden calcu­
lation (IOS). As in MQDT calculation, close coupling calcula­
tion is performed by De Vogelaere algorithm.10

In Golden-rule type calculation, the resonance life time 
is obtained by12

2히eMR r, 浏乎厂仞)& (62)

(g and 也或 denote the quasi bound and continuum states, 
respectively, and are obtained by including close channels 
alone for the former and open ones alone for the latter in 
solving close coupling equations. 呼次 may be obtain은d by 
the usual close-coupling algorithm, namely considering n in­
dependent solutions satisfying the boundary conditions at 
the origin R=R,理广吸歸=名 此厂叫dR=&h (，=1,2,-,刀) 

and propagating them to 7?=Ro and applying the following 
boundary conditions

得广6%"=》/嚎如政明,]

2蟻으"頌=咯 J흐뾰 [我%"+"站'%叮

， ， (63)

Such algorithm may not be applied to obtain for which 
all the channels are closed and small errors in propagating 
the solutions may be exponentially ampliHed in the classica* 
lly forbidden region. In this case, we solve close-coupling 
equation by starting at both ends, R=R and R=Rf and then 
propagating the solutions toward the matching radius R=R® 
Two solutions are linearly transformed so that they and their 
first derivatives are matched at R=R). Let us denote two 
solutions by 也 and (恤 and two linear transformations by 
A and B. Then

A^a=B^b

確=B漿. (的

In the real problem, quasi-bound states are obtained by in­
cluding only n = l vibrational quantum states and continuum 
states by including only 刀=0 vibrational ones. They may 
be expressed as

S=2渺"%缶监(丫，0)이1〉 (65)
J

and

乎广%R)=%X广細)}%(y，0)〈시0〉 (66)
j

where 地侦)is taken to be normalized with respect to the 
integration over R, ie.

厂必缶)ITR (67)

and Pbj are the probabilities for the bound state to be in 
the rotational state j. If the intermolecular potential is ex­
panded up to the first terms of (r—rf) i.e.

V(R, r, y)=K(R, y)+峪仇 Y) GF - (68)

and each Vo and terms are expanded in terms of har­
monics as

r, y) = + Vu(/?)P*(cosy)(r- (69)

then the probability amplitude to the dissociation state j can 
be rewritten as

K(，)=eiui%p)

= <llr-rf|0> 2,(跖1이炊。)(勤収“扇，3) 
kj J‘

3蚯衫⑵‘ +顶2"1)咛(％信)2

(&W1小广 0). (70)

In the infinite order sudden approximation (IOS),13 photo­
dissociation processes are assumed to take place at fixed 
angles y. If we consider the continuum wavefunctions wi­
thout closed channel contributions, or without m = 1 channel 
contributions, IOS continuum wavefunctions satisfy the fol­
lowing ordinary differential equations
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［一느 条+矗七醪+&=。+供 이끼丫）

=网 iqs@/y）, （71）

where En=0 is the vibrational energy of the diatomic m이e- 
cule. As mentioned earlier, /=0 was assumed and j and I 
have identical values of, let us say, j0. That is, 产드 F =_/（）（/（）+D 
where ;0 is an arbitrary positive integer. The exact value 
of jQ is not important The reason for this may be easily 
understood if IOS wavefunctions are understood as wavefun­
ctions at short-ranges where potential is highly negative and 
the rotational energy is much smaller than the kinetic energy 
of the relative motion along the dissociation coordinate R. 
IOS wavefunctions TI0S should satisfy the incoming wave 
boundary conditions

（끼丫）-加T/2言啲RfSo 厂讽勺
厂冰y）cos［M+t］（Y））］, as J—oo （72）

where n is the phase shift at the given angle y. With this 
IOS wavefunction,L y） may be obtained as

、"아（R r, ㈤ Y）<r|0>=YIOS0?lY）% 0）<r|0>, （73）

as can be confirmed by the examination of the boundary 
conditions they satisfy

馈（丫, 0）¥°%끼丫）一갸厂刑［。伊质（丫, 0）+厂‘伊垸（丫，0）5yIOS（Y）］ 
-카广气e，伊玲（丫, o）+ ?X，o（y，o）S拧。"旳 

7%巩（丫, 0）侷，t气捐偽，，+S,*s厂邮가 

*S（R, 丫）. （74）

Then
0시 V 也或）乂이 卩质中场）I 为=°〉

^<l/r-re\O）2nJo 如血丫1%（丫，（睥（丫）#顽 （75）

where A（y）is given by

A（Y）exp［zl】（Y）］= 椰㈤ Y）［씋 岬3C끼丫）

= 伍?；坎）（丫, 0由째:뵿 ］=yos（R|Y）（76）

Results and Discussion

Studies on the energy dependence of qdt parameters 
were thoroughly studied in the previous paper.5 Only one 
of qdt parameters, the transition dipole moment, was not stu­
died there. But before discussing the results of calculations 
of transition dipole moments, let us mention one missing 
point not dealt in the previous paper. In the previous work, 
it was noticed that some qdt parameters ga are crossing and 
others are avoiding each other as functions of energy. Since 
there is no symmetry in qdt parameters with respect to ener­
gy, any |如 should avoid each other. The reason why some 
Pa do not seem to be avoiding derives from the fact that 
Pa's are periodic with period of 1 and that the range of ener­
gies examined was very narrow. In Figure 3, behaviors of 
Pa are examined for a wide range of energies including thresh­
old14 regions for some channels. The figure shows that 
Pa approaches zero as energy approaches the threshold. The

0.이 3 0.0135 0.014 0.0145 0.015 0.0155 0.016
energy （eV）

Rgure 2. Transition dipole moments Da vs. energy when 12 
channels （6 open 6 closed） are included（兄=5 A, rf=3.044 a.u.）.

Figure 3. The first graph is for 心 vs. energy for 6 channel 
cases （Ro=5 A） while the second graph is for 卩<丄而.k at 
0.013 eV.

figure also shows that pa crossing each other in Figure 2 
in Ref. 5 are no longer crossing owing to their translations 
by integers.

For the triatomic van der Waals molecules considered in 
this work, about twelve channels （6 open and 6 closed） are 
enough to obtain the convergence. Table 6 shows the first 
resonance energies and the rotational distributions of their 
wave functions given by in Eq. （65） as the number of 
channels are increased from 2 to 6 for ^=3.044 a.u. and 
5.044 a.u.t respectively. MQDT and close coupling calcula­
tions showed the convergence at the similar number of chan-



966 Bull. Korean Chem. Soc. 1995, V이. 16, No. 10 Chun~Woo Lee

Table 6. Resonance energies and proportions of rotational channels in the quasi bound states as functions of the closed channel 
numbers when diatomic bond lengths are 3.044 a.u and 5.044 a.u.

乙=3.044 a.u.

of closed channels the first resonance energy (eV) proportions of rotational channels

0 2 4 6 8 10

2 0.0139677 1.00 0.31
3 0.0134165 1.00 0.60 0.09
4 0.0132496 1.00 0.70 0.19 0.02
5 0.0132093 1.00 0.72 022 0.04 0.00
6 0.0132026 1.00 0.73 0.22 0.04 0.00 0.00

re=5.044 a.u.

of closed channels the first resonance energy (eV) proportions of rotational channels

0 2 4 6 8 10

2 0.0139638 1.00 0.31
3 0.0134165 1.00 0.60 0.09
5 0.0135938 1.00 0.82 0.31 0.06 0.01
6 0.0135341 1.00 0.84 0.34 0.09 0.01
7 0.0135203 1.00 0.84 0.35 0.10 0.02 0.00
8 0.0135179 1.00 0.84 0.35 0.10 0.02 0.00

1,J An = 3A,r, = 3.044* u. 1,6*4e, A* = 5A,ra s 3.044* u.

T (d«(rw)

Figure 4. Short-range channel

o = 6*6e, Ra = «A,r, = 3.044».u.

basis functions Ta(E).

nels.
The transition dipole moments Da vs. energy for 12 chan­

nels are shown in Figure 1. Their variations as a function 
of energy are much bi职er than those of other short range 
qdt parameters 卩a and t/,a but still small enough to be consi­
dered constant around resonances. As we described earlier, 
Uia(i = 1, 2,…,n) represent the projections of the short range 
channel basis function % to the standing wave channel basis

0.2

o

0 
0 2 4 6 8 10 12 14

J

0.2

Hgure 5. Comparison of final rotational distributions of photo­
fragments normalized to the case of J=0 calailated by close 
coupling method, MQDT, Golden-rule like method, IOS approxi­
mation for 5.044 a.u. and 3.044 a.u.. Calculation is done with 
16 channels (8 open 8 closed). Also shown are the normalized 
probabilities of finding J in the quasi-bound state defined in Eq. 
(65).

functions ¥ or, if we disregard the unimportant phase fac­
tors, to the dissociation states 蠻一히 to the channels i (i=l, 
2,…,n). Examination of Uja shows that Da is bi^er as the
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Figure 6. Eigenquantum defects 方 and rp calculated around 
the resonance energy 0.0132026 eV with 12 channels (6 open 
6 closed) and with ^=3.044 a.u. are 아)own in the first graph. 
rP are shown by s이id lines while 而 are 아x)wn by dashed lines. 
The second graph shows times delayed by resonances for each 
eigen channel p.

closed channel contributions to a are bigger. As shown in 
Figure 4 for the first 6 a's (the remaining 6 are almost 
identical with the first 6 ones except the sign changes for 
n=l components which are not shown), short range channel 
basis functions have values only around some angle values 
and may be regarded as angle functions. Then the values 
of Da are big when correspond to angle functions which 
have big values around y=90°. Since all the dynamics, such 
as energy exchanges, angular momentum transfers, torques 
exerting to the diatomic photofragments, occur when the 
photofragments are close together, we could approximate the 
states of the system during photodissociation by short-range 
eigenchannel basis functions Ta. Since 也 are angles func­
tions, we may say that photodissociations occur along some 
angles whose values are fixed by '爲 This picture is equiva­
lent to the IOS approximation but differ in that now angles 
are quantized.

In MQDT, the effect of closed flannels on the predissocia­
tion dynamics can be seen from the comparison of eigen 
quantum defects & and rp. They are equal if the closed 
channels play no significant role either by their absence or 
at off-resonance. Figure 6 confirms this by showing that they 
differ only around a resonance. The first derivatives of rp 
with respect to E may show the net effects of closed chan­
nels. We notice that those quantities multiplied by h/2, i.e. 
(hdxp/2dE\ are just the times delayed by collision at eigen- 
channels p.15 The times delayed vs. E are shown in Figure
6. Notice that the magnitudes of times delayed agree quite 
well with 3.0X10-9 sec obtained from f= 2.2X10 6 eV.

Table 7. The positions and widths of resonance peaks in case 
of 8, 10, 12 channels calculated by several methods (re=3.044 
a.u.)

8 channels

Golden IOS Close-coupled MQDT

Er (eV) 
r (eV)

0.0132494
1.46 X10"6 1.04X10 一 6

0.0132490 
i.oxio-6

0.0132486
I.OXIO6

10 channels

Golden IOS Close-coupled MQDT

Er (eV) 
r (eV)

0.0132075
1.86X106 1.72X106

0.0132095
1.8X10-6

0.0132089
2.0 X IO"6

12 channels

Golden IOS Close-coupled MQDT

Er (eV) 
r (eV)

0.0132026
2.19X10-6 2.62X10-6

0.0132024
2.2X10-6

0.0132021
2.2X10 6

Photodissociation cross sections calculated for the system 
of triatomic van der Waals molecules with the molecular 
parameters given in Table 1 and 2 take the Lorentzian shape 
around resonances This is due to the fact that in the vibra­
tional predissociation of van der Waals m이ecules the transi­
tion to the quasi-bound state is much bigger than that to 
the continuum states. The calculation of the line profile pa­
rameter q for the same system with molecular parameters 
given by Table 1 and 2 was —350, which indicates 아lat the 
spectral shape is almo아 Lorentzian. Detailed study on this 
was published in the previous paper.16 Table 7 summarizes 
the positions and widths of the resonance peaks in cases 
of 8, 10, 12 사｝annels (consisting of half-open and half-closed 
channels) calculated by using the four different methods, 
Golden rule like calculation, IOS approximation, close cou­
pling (CC) method, and MQDT method. The agreements 
among different methods are excellent. The table shows 사lat 
the life times decrease or the resonance widths r increase 
with the increase of the number of channels. This looks rea­
sonable since more channels mean more pathways to decom­
pose.

The final rotational state distributions in case of 3.044 
a.u. and 5.044 a.u. calculated by four methods are 아lown 
in Figure 5. Also shown are the rotational state distributions 
of the diatomic m이ecule component in the triatomic van 
der Waals molecules at their quasi bound states. The binodal 
structures are 아iown up in case of 3.044 a.u.. The figures 
show that the Golden-rule like calculation, the close coupling 
method, and the MQDT method yield almost identical results 
while 나此 IOS approximation shows a little deviation. The 
IOS approximation 아the rotational distributions extend­
ed to higher J though such extensions are small. Uncertainty 
principle 3厶。〜h tells us 나lat a little extension to higher 
J means that angular motions in IOS are treated more rigidly 
than in other methods as can be understood intuitively.

The rotational state distributions of diatomic molecules 
at quasi bound states and at the photofragments are quite 
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different and those of the latter are more shifted to higher 
j values. That is, diatomic photofragments get more rotational 
angular momentum by the action of the torque of the aniso­
tropy of the intermolecular potential as they depart from 
other fragment.

We can see from Table 7 that the resonance width in 
the molecular parameters chosen is around 2X10-6 eV and 
about ten times smaller than the value of rotational constant, 
16.2 X10-6 eV. That is, the resonance life time is more than 
ten times larger than the rotational period. It may be consid­
ered that resonance states live long enough to forget the 
ground state information. The fact that IOS approximation 
holds well means that the decomposition takes place much 
faster than the rotation of the diatomic fragment. This deri­
ves from the fact that the kinetic energy of the relative mo­
tion of photofragments is thousand times larger than the 
rotational energy.

Acknowledgment. This work was supported by KO- 
SEF under Contract No. 913-0303-001-2.

References

1. Beneventi, L.; Casavecchia, P.; V이pi, G. G.; Bieler, C. 
R.; Janda, K. C. J. Chem. Phys. 1993, 98, 178 and refer­
ences therein.

2. Schinke, R.; Eng이, V. Faraday Discuss. Chem. Soc, 1986,

82, paper 11.
3. (a) Miller, W. H. Adv. Chem. Phys. 1975, 25, 69. (b) ibid 

1975, 30, 77.
4. Fano, U.; Raut A. R. P. Atomic Collisions and Spectra; 

Academic: Orlando, 1986.
5. Lee, C. W. Bull. Korean Chem. Soc. 1991, 12, 228.
6. Greene, C. H.; Rau, A. R. P.; Fano, U. Phys, Rev. 1982, 

A26, 2441.
7. (a) See reference 2. (b) Buckingham, A. D.; Fowler, P. 

W.; Hutson, J. M. Chem. Rev. 1988, 88, 963.
8. Halberstadt, N.; Beswick, J. A.; Janda, K. C. J Chem. 

Phys. 1987, 87, 3966.
9. Child, M. S. Molecular Collision Theory-, Academic: Lon­

don, 1974.
10. Lester, W. Methods. Comput. Phys. 1971, 10, 243.
11. Hager, W. W. Applied Numerical Linear Algebra; Prentice- 

Hall International: London, 1988.
12. Janda, K. C. Adv. Chem. Phys. 1985, 20, 201.
13. (a) McGuire, P. Chem. Phys. Lett. 1973, 23, 575. (b) Mc- 

guire, P.; Kouri, D. J. J. Chem. Phys. 1974, 60, 2488. (c) 
Pack, R. T. J. Chem. Phys. 1974, 60, 633. (d) Schinke, 
R. J, Phys. Chem, 1986, 9。, 1742.

14. Taylor, J. R. Scattering Theory; John Wiley and Sons: 
New York, 1972.

15. Smith, F. T. J. Chem. Phys. 1962, 36, 248.
16. Lee, C. W. BulL Korean. Chem. Soc. 1995, 20, 850.

Assignment of the Redox Potentials of Cytochrome C3 of 
Desulfovibrio vulgaris Hildenborough by 'H NMR
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The heme assignment of the lH NMR spectrum of cytochrome c3 of Desulfovibrio vulgaris Hildenborough within the 
X-ray structure were fully cross established according to their redox potential. The major reduction of the heme 
turned out to take place in the order of hemes IV, I, II and III (the heme numbers indicating the order of bonding 
to the primary sequence). This assignment can provide the physicochemical basis for the elucidation of electron transfer 
of this protein.

Introduction

Cytochrome 勺 are a family of low molecular weight (13 
kDa) electron-transfer protein that may be isolated from sul- 
fate-reducing bacteria.1,2 The proteins contain 4 hemes in 
a single polypeptide and show very low redox potentials.3 
Cytochrome c3 are electron carriers required for the electron 
transfer between hydrogenases4 and smaller carriers. In vitro, 
they facilitate the electron transfer from hydrogenase to fla- 
vodoxin and rubredoxin5 and are a necessary component of 
several different redox reaction in crude extracts.

•To whom correspondances should be addressed.

Crystal structures of cytochrome c3 from Desttlfovibrio de- 
sulfuricans Norway (DdN), Desulfovibrio vulgaris Miyazaki F 
伽MF) and Desulfovibrio vulgaris Hildenborough (DvH).6'9 
The two proteins are closely homologous. The redox poten­
tial of cytochrome 奂 is an important parameter in under­
standing its physiological role. Macroscopic and microscopic 
redox potentials were determined for a series of cytochrome 
C3 io~i3 The assignment for 应MF cytochrome c3 of the mi­
croscopic redox potentials to the hemes in the crystal struc­
ture has been performed by means of NMR.14 A correlation 
between the microscopic redox potentials and the crystal 
structure has been reported for cytochrome c3 from DJN?5 
It is interesting to compar the redox processes of two cy-


