EXAMPLE AND COUNTEREXAMPLES IN DOUBLE INTEGRAL AND ITERATED INTEGRAL

  • Published : 1995.12.01

Abstract

[1] Show that ∫$\_$0/$\^$1/ [∫$\_$0/$\^$1/ f($\chi$,y)dy] d$\chi$ = ∫$\_$0/$\^$1/[∫$\_$0/$\^$1/ f($\chi$,y)d$\chi$] Counterexample: If pk denotes the k-th prime number, let S(pk) = (equation omitted), let S = ∪$\_$k=1/$\^$$\infty$/ S(pk), and let Q = [0, 1]${\times}$[0, 1]. Define f on Q as follows; f($\chi$, y) = 0 ($\chi$, y)$\in$S, f($\chi$, y) = 1 ($\chi$, y)$\in$Q - S.(omitted)

Keywords