The Pure and Applied Mathematics 2 (1995), No 2, pp. 127-132 J. Korea Soc. of Math. Edu. (Series B)

EXAMPLE AND COUNTEREXAMPLES IN DOUBLE INTEGRAL AND ITERATED INTEGRAL

Byung Moo Kim

I. Multiple Riemann Integrals

[1] Show that $\int_0^1 \left[\int_0^1 f(x,y) dy \right] dx = \int_0^1 \left[\int_0^1 f(x,y) dx \right]$

Counterexample: If p_k denotes the k-th prime number, let $S(p_k) = \left\{ \left(\frac{n}{p_k}, \frac{n}{p_k} \right); n = 1, 2, \dots, p_k - 1 \right\}$, let $S = \bigcup_{k=1}^{\infty} S(p_k)$, and let $Q = [0, 1] \times [0, 1]$. Define f on Q as follows; f(x, y) = 0 $(x, y) \in S$, f(x, y) = 1 $(x, y) \in Q - S$.

Solution: Let $y \in [0,1]$.

case i) $y \neq \frac{n}{p_k}$ for all $n < p_k$ and for anll $k \in N$.

In this case $(x,y) \in Q - S$ for all $x \in [0,1]$. Hence f(x,y) = 1 so that $\int_0^1 f(x,y) dx = 1$.

case ii) $y = \frac{n}{n_k}$ for some $k \in \mathbb{N}$ and $n < p_k$.

Since $S(p_1), S(p_2), \cdots$ are disjoint, there are finitely many $x \in [0,1]$ namely $x = \frac{1}{p_k}, \frac{2}{p_k}, \cdots, \frac{p_k-1}{p_k}$ for which $(x,y) \in S$. Hence f(x,y) = 1 for all but finitely many $x \in [0,1]$, so that $\int_0^1 f(x,y)dx = 1$.

Consequently, we have $\int_0^1 f(x,y)dx = 1$ for all $y \in [0,1]$ and $\int_0^1 \int_0^1 f(x,y)dxdy = 1$. Symmetrically $\int_0^1 \int_0^1 f(x,y)dydx = 1$.

To show that S is dense in Q, let $(x,y) \in Q$ and let $\epsilon > 0$ be given.

Typeset by AMS-TEX

There are natural numbers ϵ, r, s such that $\epsilon < s, r < s$ and $\left| \left(\frac{q}{s}, \frac{r}{s} \right) - (x, y) \right| < \epsilon$. Choose a $k \in N$ such that $\frac{1}{p_k} < \epsilon, s < p_k$. Set $n = \left[\frac{qp_k}{s} \right], m = \left[\frac{rp_k}{s} \right]$ then $\left| \left(\frac{n}{p_k}, \frac{m}{p_k} \right) - \left(\frac{q}{s}, \frac{r}{s} \right) \right| < 2\epsilon$.

Thus $\left|\left(\frac{n}{p_k},\frac{m}{p_k}\right)-(x,y)\right|<3\epsilon$.

It is clear that Q - S is dense in Q.

Since every rectangle $R \subset Q$ contains a point of S as well as a point of Q - S, $\int \int_Q f = 1$, $\int \int_Q f = 0$. Hence $\int_Q f(x,y)d(x,y)$ does not exist.

[2] Show that $\int_0^1 f(x,y)dx = \int_0^1 \left[\int_0^1 f(x,y)dx \right] dy = \int_Q f(x,y)d(x,y) = 0$ but that $\int_0^1 f(x,y)dy$ does not exist for ratimal x.

Counterexample: Define f on the square $Q = [0,1] \times [0,1]$ as follows:

$$f(x,y) = \begin{cases} 0 & \text{if at least one of } x,y \text{ is irrational,} \\ 1 & \text{if } y \text{ is rational and } x = \frac{m}{n}, \\ & \text{where } m \text{ and } n \text{ are relatively prime integers, } n > 0 \end{cases}$$

Solution: Let $y \in [0, 1]$. case i) y is irrational.

$$\int_0^1 f(x,y) dx = \int_0^1 0 dx = 0$$

case ii) y is rational.

$$f(x,y) = \begin{cases} 0 & \text{if } x \text{ is irrational,} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \end{cases}$$

Let $\epsilon > 0$ be given. Choose $N \in N$ s.t $\frac{1}{N} < \epsilon$. Put $S = \{x \in [0,1] | x = \frac{m}{n}, gcd(m,n), n < N\}$. Then S is a finite set.

Take a $\delta > 0$ such that $\delta \sum_{\frac{m}{n} \in S} \frac{1}{n} < \epsilon$.

If $\Delta = \{\Delta_1, \Delta_2, \dots, \Delta_s\}$ is a partition of [0, 1] into finite closed intervals, $\|\Delta\| < \delta$ and ξ is a choice function on Δ then

$$0 \leq S_{\Delta\xi}(f(\cdot,y))$$

$$= \sum_{i} f(\xi_{i},y)\Delta_{i}x$$

$$= \sum_{\substack{\xi_{i} \text{ is } \\ irrational}} f(\xi_{i},y)\Delta_{i}x + \sum_{\substack{\xi_{i} \in S \\ i \text{ rational}}} f(\xi_{i},y)\Delta_{i}x + \sum_{\substack{\xi_{i} \text{ is rational} \\ \xi_{i} = \frac{m}{n} \\ n \geq N}} f(\xi_{i},y)\Delta_{i}x$$

$$\leq 0 + \sum_{\substack{\frac{m}{n} \in S}} \frac{1}{n}\Delta_{i}x + \sum_{\substack{\xi_{i} \text{ is rational} \\ \xi_{i} = \frac{m}{n} \\ n \geq N}} \frac{1}{n}\Delta_{i}x$$

$$< \epsilon + \epsilon = 2\epsilon.$$

where $\Delta_i x$ is the lingth of the intervals Δ_i . Hence $\int_0^1 f(x,y) dx = 0$.

Let $\epsilon > 0, N \in \mathbb{N}, S, \delta$ be the same as above.

If $\Delta = \{\Delta_{ij} | i = 1, 2, \dots, s, j = 1, 2, \dots, t\}$ is a partition of Q into finite rectangles $\|\Delta\| = \max_{i,j} dia\Delta_{ij} < \delta$, and (ξ, η) is a choice function on Δ then

$$0 \leq S_{\Delta\xi\eta}(f) = \sum_{ij} f(\xi_{ij}, \eta_{ij}) \Delta_{ij} A$$

$$= \sum_{\substack{at \ least \\ one \ of \ \xi_{ij}, \eta_{ij} \\ is \ irrational}} f(\xi_{ij}, \eta_{ij}) \Delta_{ij} A + \sum_{\substack{\eta_{ij}, irrational \\ \xi_{ij} \in S}} f(\xi_{ij}, \eta_{ij}) \Delta_{ij} A$$

$$+ \sum_{\substack{\eta_{ij}, irrational \\ \xi_{ij}, irrational \\ \xi_{ij} \notin S}} f(\xi_{ij}, \eta_{ij}) \Delta_{ij} A \leq 0 + \epsilon + \epsilon = 2\epsilon.$$

Hence $\int_Q f(x,y)d(x,y) = 0$.

For a fixed rational $x = \frac{m}{n}$, gcd(m, n) = 1.

$$f(x,y) = \begin{cases} 0 & \text{if } y \text{ is irrational} \\ \frac{1}{n} & \text{if } y \text{ is rational} \end{cases}$$

$$\int_0^1 f(x,y)dy = \frac{1}{n}, \ \underline{\int_0^1} f(x,y)dy = 0.$$

Hence $\int_0^1 f(x,y)dy$ does not exist for rational x.

II. Multiple Lebesgue Integrals

[1] Show that $f \in L(\mathbb{R}^2)$ by the monotone convergence theorem and calculate the double integral $\int_{\mathbb{R}^2} f(x,y) d(x,y)$

Example: For fixed c, 0 < c < 1, define f on \mathbb{R}^2 as follows;

$$f(x,y) = \begin{cases} (1-y)^c/(x-y)^c & \text{if } 0 \le y < x, \ 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Solution: Define
$$f_n(x,y) = \begin{cases} \frac{(1-y)^2}{(x-y)^c} & \text{if } 0 \le y < x - \frac{1}{n}, \ 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Then f_n is Riemann integrable and

$$\int \int_{R^2} f_n(x,y) d(x,y) = \int_0^{1-\frac{1}{n}} \int_{\frac{1}{n}}^{1-v} \frac{(1-v)^c}{u^c} du dv$$

$$= \frac{1}{1-c} \left(\left(1 - \frac{1}{n} \right) - \frac{1}{2} \left(1 - \frac{1}{n} \right)^2 \right)$$

$$+ \frac{1}{1-c} \cdot \frac{1}{n^{1-c}} \cdot \left(\frac{1}{1+c} \cdot \frac{1}{n^{1+c}} \right) \to_{n \to \inf} \frac{1}{2(1-c)}$$

where x - y = u, y = v, x = u + v, y = v.

By the monotone convergence theorem, $\int_{R^2} f(x,y)d(x,y) = \frac{1}{2(1-c)} < \infty$. Hence $f \in L(R^2)$ and $\int_{R^2} f(x,y)d(x,y) = \frac{1}{2(1-c)}$.

[2] Show the both iterated integrals $\int_R \left[\int_R f(x,y) dx \right] dy$ and $\int_R \left[\int_R f(x,y) dy \right] dx$ exist and are equal, but that the double integral of f over R^2 does not exist.

Counterexample: Let $f(x,y) = e^{-xy} \sin x \sin y$ if $x \ge 0, y \ge 0$ and let f(x,y) = 0 otherwise.

Solution: $|f(x,y)| \leq e^{-xy}$ and for each y, the function $x \mapsto e^{-xy}$ is integrable by the bounded convergence theorem with integral $\frac{1}{y}$ if y > 0. Hence $x \mapsto f(x,y)$ is integrable. If y = c then f(x,y) = 0 for all x so that f(x,y) is integrable with integral 0. Hence for all $y \geq 0$, and calculate the double integral,

$$\int_{R} \left[\int_{R} f(x,y) dx \right] dy = \int_{R} \left[\int_{R} f(x,y) dy \right] dx = \frac{\pi}{2}.$$

By the Tonelli-Hobson test, $\int_{\mathbb{R}^2} f(x,y) d(x,y)$ does not exist.

REFERENCES

1. Apostol.T.M., Mathematical Analysis, 2nd ed., Addison-Wesley publishing company (1981).

- 2. Asplurd, E. and Bungart, L., A First Course in Integration, Holt, Rinehart, and Winston, New York.
- 3. Bartle, R., The Elements of Integration, Wiley, New York.
- 4. kestelman, H., Modern Theories of Integration, Oxford University Press.
- 5. Korevaar, J., Mathematical Methods.
- 6. Riesz, F., and Sz-Nagy, B., Functional Analysis, L., Borom, translator, Ungar, New York.
- 7. Rogosinski.W.W., Volume and Integral. Wiley, New York.

Chungju National University Chungju, 380-702, Chungbuk, Korea