Stochastic Optimization Approach for Parallel Expansion of the Existing Water Distribution Systems

추계학적 최적화방법에 의한 기존관수로시스템의 병열관로 확장

  • 안태진 (농어촌진흥공사, 농어촌연구원) ;
  • 최계운 (인천대학교, 토목공학과) ;
  • 박정응 ( 서울산업대학교, 토목공학과)
  • Published : 1995.04.01

Abstract

The cost of a looped pipe network is affected by a set of loop flows. The mathematical model for optimizing the looped pipe network is expressed in the optimal set of loop flows to apply to a stochastic optimization method. Because the feasible region of the looped pipe network problem is nonconvex with multiple local optima, the Modified Stochastic Probing Method is suggested to efficiently search the feasible region. The method consists of two phase: i) a global search phase(the stochastic probing method) and ii) a local search phase(the nearest neighbor method). While the global search sequentially improves a local minimum, the local search escapes out of a local minimum trapped in the global search phase and also refines a final solution. In order to test the method, a standard test problem from the literature is considered for the optimal design of the paralled expansion of an existing network. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.

관망상배관(Looped networks)시스템에서 관수로시스템의 전체비용은 폐회로유량(Loop flows)에 따라 영향을 받는다. 따라서 관망상배관의 최적설계를 위한 수학적모형을 추계학적 최적화방법에 적용하기 위하여 폐회로유량의 섭동(Perturbations)으로 전체비용이 변하게 하였다. 관망상 배관문제의 분석가능영역은 수많은 국지해(Local optimum)를 갖는 비볼록(Nonconvex)이므로 분석가능영역의 효율적인 심사를 위하여 수정추계학적 심사방법을 제안하였으며 이 방법은 국부심사단계(Global search phase)와 국지심사단계(Local search phase)로 구성되어 있다. 국부탐사에서는 점차적으로 국지해를 증진시키며 국지탐사에서는 국부탐사단계에서 교착상태에 있는 국지해로 부터 벗어나게 하거나 최종국지해를 증진시킨다. 제안한 방법의 효율성을 검정하기 위하여 참고문헌에 있는 기존관수로시스템의 병열관로(Parallel pipe line) 확장문제를 표본으로 채택하여 제안한 방법을 적용한 결과 먼저 발표된 연구자들의 비용보다 적은 비용으로 설계할 수 있었다.

Keywords

References

  1. Water Resources Research v.13 Design of optimal water distribution systems Alperovits,E.;Shamir,U.
  2. Journal of the Environmental Engineering Division v.111 no.2 Optimal expansion of water distribution systems Bhave,P.R.
  3. Water Resources Research v.26 no.4 A two-phase decomposition method for optimal design of looped water distribution networks Fujiwara,O.;Khang,D.B.
  4. Proc. 9th Int. Symp. on Urban Hydrology, Hydraulic and Sediment Control Optimization of pipe networks Gessler,J.
  5. Water Resources Research v.25 no.7 Analysis of the linear programming gradient method for optimal design of water supply networks Kessler,A.;Shamir,U.
  6. Engineering Optimization v.17 Decomposition technique for optimal design of water supply network Klessler,A.;Shamir,U.
  7. Reliability analysis of water distribution systems, edited by L. W. Mays Optimization models for design of water distribution systems Lansey,K.E.;Mays,L.W.(ed.)
  8. Engineering Optimization v.15 A Two-phase network design heuristic for the minimum cost water distribution systems under a reliability constraints Loganathan,G.V.;Sherali,H.D.;Shah,M.P.
  9. Water Resources Research v.21 no.5 Optimal urban water distribution design Morgan,D.R.;Goulter,I.C.
  10. J. of Environmental Engineering Division v.107 no.4 Optimization of looped water distribution systems Quindry,G.E.;Brill,E.D.;Liebman,J.C.
  11. Chapter Ⅸ in Handbooks in OR & MS v.Ⅰ Global optimization Rinnooy Kan,A. H. G.;Timmer,G.T.;G.L.Nemhauser(et al.)
  12. Report No. 116, Hydrodynamics Laboratory, Department of Civil Engineering, MIT. Linear programming and dynamic programmong application of water distribution network design Schaake,J.C.;Lai,D.
  13. Journal of Global Optimization v.1 Stochastic techniques for global optimization: A Survey recent advances Schoen,F.
  14. Water Resources Research v.10 no.1 Optimal design and operation of water distribution systems Shamir,U.
  15. Global optimization lecture notes in computer science 350 Torn,A.;Zilinkas,A.
  16. J. of Hydraulics Division v.99 no.HY9 Least cost design of water distribution Watanatada,T.