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Abstract

The cost of a looped pipe network is affected by a set of loop flows. The mathematical model for optimiz-
ing the looped pipe network is expressed in the optimal set of loop flows to apply to a stochastic optimiza-
tion method. Because the feasible region of the looped pipe network problem is nonconvex with multiple
local optima, the Modified Stochastic Probing Method is suggested to efficiently search the feasible region.
The method consists of two phase: 1) a global search phase(the stochastic probing method) and ii) a local
search phase(the nearest neighbor method). While the global search sequentially improves a local minimum,
the local search escapes out of a local minimum trapped in the global search phase and also refines a final
solution. In order to test the method, a standard test problem from the literature is considered for the opti-
mal design of the parallel expansion of an existing network. The optimal solutions thus found have signifi-
cantly smaller costs than the ones reported previously by other researchers.
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1. Introduction

Pipe network optimization methods should
incorporate a scheme for optimal layout selec-
tion including optimal pipe diameter selection.
A comprehensive review of optimization of
water distribution system is given in Lancy
and Mays (1989). If it is assumed that the
layout of a looped network is known, the
flow variables and/or the head variables are
used to optimize the cost of the given layout.
The conventional optimization methods are di-
vided into the following four groups based on
Kessler and Shamir (1991), which are 1) op-
timization of optimal heads and optimal flows
simultaneously, 1i) optimization of flows with
respect to fixed heads, iil) optimization of
hydraulic heads with respect to fixed flows,
and iv) optimization of flows or heads by
solving alternatively for flow and head varia-
bles.

The methods in the first group are usually
based on nonlinear programming or enumera-
tion techniques. Watanatada (1973) used the
(1974)
used penalty functions to solve the problems.

Quasi-Newton method and Shamir

These techniques are relatively complicated,
converge slowly, and only a local optimum is
possible. Gessler (1982) presented a model
based on an enumeération scheme to find the
best solution. Given a set of possible pipe
sizes, the method performs cost and hydraulic
feasible tests on all potential combinations to
find the best solution. Such enumeration
method may be computationally burdensome
if many possibilities cannot be discarded
apriori.

The methods in the second group solve the
optimal flow rates for fixed heads. If the val-
ues of the heads are known, the problem is
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reduced to a concave problem with a separa-
ble objective function and linear constraints.
Quindry et al. (1981) presented an algorithm
in which the heads fixed in the

subproblem and updated after each iteration.

were

The subproblem converted the nonlinear cost
function to a piece—wise linear function. The
subproblem was based on the work of Lai
and Schaake (1969) and determined optimal
continuous diameter for a link. A gradient
term was derived from the node equation and
directed the change in the head distribution
for the next iteration.

The methods in the third group solve the
optimal heads for fixed flows. If the flows
are known, the problem is reduced to a con-
vex problem with a separable convex objec-
tive function and linear constraints. Therefore
the problem provides a global minimum.
Alperovits and Shamir (1977) presented a
two level algorithm that is called the linear
programming gradient(LPG) method. Kessler
and Shamir (1989) introduced the projection
of the gradient of objective function onto the
constraint surface to improve the search pro-
cedure and obtained a local optimal solution.

The methods in the fourth group use a de-
composition technique. Fujiwara and Khang
(1990) and Kessler and Shamir (1991) pro-
posed a two—phase decomposition method.
These methods attempt to find the near glo-
bal optimum. It is not uncommon to find real
problems which have cost or profit functions
defined over a nonconvex feasible region in-
volving local optima and the pipe network op-
timization problem falls into this group.

In this paper an existing municipal water
distribution system is considered. The mathe-
matical optimization model for the pipe net-
work is nonlinear and nonconvex, which may

have several local optima. While conventional



optimization methods find only local optima,
adapt the
local optimum seeking methods to migrate

stochastic optimization schemes
among local optima to find the best one. A
variety of general global optimization strate-
gles has been suggested and comprehensive
reviews are given in Torn and Zilinskas
(1987), Rinnooy Kan and Timmer (1989),

and Schoen (1991).
2, Stochastic Optimization Approach for
Pipe Networks
2.1 Model Formulation

The pipe network problem(P1) for fixed
head nodes may be stated as follows:Problem
Pl:

M
Minimize E 2 C(r,/)m X(i, jym (1)
(L,im=1
Subject to:
A?Q(x,/)_gQ(z,i):q{ for lE{N—S} (2)
H;‘H;mn_ 2 iz‘](l‘/)mx(’rf)mzo
(r.J)Erk m
for s&S and k= {N-S} (3)
2 30 ym¥ipm=b, for pEp (4)
(r,ﬂep m
%x(i,ﬂm:L(l.)} for(l,J)EL (5)
X(,'])ZO (6)

where, N= the number of nodes

M=the number of commercial pipe diameters
S=the set of fixed head nodes

{N-S}=the set of junction nodes

L=the set of links
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Q.. ,=the steady state flow rate through link
(LHEL

L ,=the length of link(i,j))&L

C.. ym=the cost per unit length of a pipe of d,,
ry,=the path from a fixed head node(source)
to demand node, k

P=the set of paths connecting fixed head
nodes and basic loops

b,=the head difference between the fixed
head nodes for path p connecting them; and
it is zero corresponding to loops

H,=the fixed head

H:nn:the minimum head at node k¥ €{N-S}

g:=the supply at node i which is positive; if
it i1s demand, it is negative.

Let J. ,» be the hydraulic gradient for seg-
ment m(partial length of a link with diameter
d.) which is given by

Jaom=K[Qu.»/CT Bsd,;“” (7)

in which:K=10.7 for €., in cubic meters
per second(cms) and d, in meters; C=Hazen
-Williams Coefficient. The pipe network prob-
lem may be stated as follows:In Problem(P1)
pipe cost objective function (1) is minimized;
constraint (2) represents steady state flow
continuity; constraint (3) is the minimum
head restriction; constraint (4) represents the
sum of head losses in a path which is zero
for loops; constraint (5) dictates that sum of
segment lengths must equal link length; con-
straint (6) is the non—negativity on segment

lengths.
2.2 Modified Stochastic Probing Method

As stated in chapter 1, the general mathe-

matical model for a pipe network is a

nonlinear and nonconvex programming, which
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may have several local optima. Deterministic
optimization methods have been applied to the
pipe network problems to find only local opti-
ma. For the given mathematical model(P1),
the model reduces to a linear programming
if a set of fixed link flows are
the model
still defines over a nonconvex feasible region

problem
hydraulically feasible. However,
involving several local optima because the
cost of the model mainly depends upon a set
of fixed link flows. The objective of the sto-
chastic optimization method is to find the so-
lution in a feasible region for which the
mathematical model contains its smallest
value, a near global minimum.

Since the cost of the fixed flows model is
affected by the fixed link flows, the following
Problem P2 is suggested for the solution of
Problem P1. Problem(P2): Minimize LP(Q)
or LP(q) where @ is a set of link flows and
q is a set of loop flows. It should be noted
that LP denotes the ‘solution of problem P1
given a set of link flows @ or a set of loop
flows q. The linear programming model, LP(
@), is equivalent to LP(qg) because a set of
link flows is determined by a set of loop
flows in the looped network. The set of loop
flows q is treated as the set of decision vari-
ables in the stochastic . optimization method.
The stochastic optimization method is then to
find a near global minimum @¢* such that LP
(g*)<LP(q) for all ¢ € R" where R" is a
vector space and n is the number of loops.
Therefore, the given model has been convert-
ed into an unconstrained model in the sto-
chastic optimization. The modified stochastic
probing method is employed to search the
feasible region of a pipe network.

The modified

consists of a global search phase(the stochas-

stochastic probing method

tic probing method) and a local search phase
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(the nearest neighbor method). These two
phases are used to obtain a near global mini-
mum of a looped pipe network. First the glo-
bal search is conducted with the stochastic
probing method. For a given starting location
of loop flows ¢ the stochastic probing meth-
od is sequentially used to find a local mini-
mum q. When the stochastic probing method
does not improve a local minimum gq, the
nearest neighbor method is then used to es-
cape out of a local minimum ¢, and also to
refine a final optimal solution obtained with
the global
method is to search the location of a near

search. The stochastic probing

global minimum g*. The method begins with
the construction of a probing distribution,
with density p(+ | q° ¢°) where ¢° location
of loop flows and ¢ is a scale of loop flows,
respectively. The costs of LP(g) are evaluat-
ed at a few loop flows q sampled from the
distribution. Since the probing distribution is
a normal distribution, the generated loop
flows outside of a 100(1-a)% confidence in-
terval for the given parameters are simply
discarded. It is assumed that the cost of sim-
ulating sample loop flows are negligible com-
pared to those of evaluating LP(q). The up-
dating location of loop flows g and scale ¢
are based on Gibbs-like

the entropy of the

distribution and
current distribution,
respectively. Thus, the method is related to
the simulated annealing in that the updating
location of loop flow is on basis of Gibbs dis-
tribution. The method iteratively improves the
cost of LP(q) by searching successive better
loop flows. ’

Once an optimal local minimum g* is ob-
tained by the global search, the local search
is conducted to improve the current local
minimum ¢*. That is, the local search is de-

signed to move from the current local mini-



mum g* to a better solution g+q* with LP(
q)<LP(g*). In this phase g is any point in
a neighborhood of g* such that | g—¢* | <&
and LP(q)<LP(q*), where & 1s a prescribed
critical distance. The procedure of the modi-
fied stochastic probing method is described
next.

Global Search Phase

Step 0.(Initialization) Select an initial loca-
tion of loop flow @° and a scale fac-
tor ¢° of a probing distribution. As-
sign a value for the level of signifi-

cance a.
Step 1.(Generation step) At stage n(n>0),
generate k independent, identically

distributed loop flows @.j,-**q. from
p(+ | @, o). Let g.=q. and ¢"=(q
nor” "Gk

Step 2.(Update location)The updated loca-
tion g.+; 1s chosen from a point
that is the highest probability in the
following Gibbs-like distribution;

1 ~B(¢:1,a™)

Pr(Qn+I:qm)=79 y i:0,1,"‘,k

kK  —B(®:1,q"
where, Z=3e and
=0

©oay LP(Qm)—'LP(qW)
Blia) = (TP (g, LP(G))-LPr

in which LP( ) is the cost of the linear pro-
gram(P1) given a set of loop flows.
Step 3.(Updated scale) The rule for scale
reduction is of the form
1) grn+1=qn and o, if f(qn+1)2f(¢In)
Call the Local Search Phase
i) G.+i=w0. if f(q.), where w,

_ Ent(n)
“log(k+ 1)

The scale reduction factor w, is based on
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the entropy of the current distribution:
K
Ent(n)=—1%Pr(qn+1=qn,)log PAg.+1=q.)

where P,( +) is given in the current distribu-
tion.
Step 4.(Stopping rule)
i) If 6.+,<0.,, Increase n by one and
go to step 1.
i) If 6,+,=6, and no improvement
has been obtained in the last few it-

erations, save g : =g,and f(q :) and

stop; otherwise go to Step 1.

Local Search Phase

Step a.(Initialization) Choose the current
probing distribution with density p( ¢ | g, ¢.).
Assign values for sample size Mmax and criti-
cal distance §. Set M=1.

Step b If Mmax=M, save ¢, and LP(g,).
Go to step 1 of the Global Search Phase. Let

q: be a random neighbor of g, Generate q:
from the density function p( * | g, 0.).

Step c. i)If | g -q. | <& and LP(q )-LP(q,
)<0 q. =q: JIncrease M by one and go to step
b.

ii) If | g,—gn | <& or LP( g )-LP(g,)>0,
go to step b.

2.3 Parallel Expansion of Existing Networks

In the present formulation(Problem P1) the
parallel expansion of existing pipes is consid-
ered. Adaptation of Problem(P1) for existing
networks is as follows. For existing pipes, the
pipe diameters are fixed and parallel links
may be required for carrying additional flow
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in order not to increase the head loss. The
flow from node t¢ to node j, for a parallel
system, is denoted by Qi ,=&u0+&Qu v In
which subscripts O and N indicate Old and
New respectively. In the present study it is
suggested that Problem(P1) be solved with
the restriction that an existing pipe is not un-
dersized. If an existing pipe is undersized, the
flow becomes open channel flow rather than
pipe flow because the hydraulic radius of the
existing pipe is larger than that of the under-
sized pipe. From the solution to Problem(P1)
the head loss for the each pipe can be ob-
tained by multiplying the optimal segment
lengths, x. ,.s and the corresponding head
gradients J, ,» s Because optimal head loss,
friction parameter and existing pipe size are
the flow

therefore the flow for the parallel pipe can

known, iIn an existing link and
be computed. The parallel pipe is in turn de-
composed into discrete diameter pipes in se-
ries to design the least cost. The procedure
of the parallel expansion of existing pipe net-
works 1s suggested as follows.

Step 1. Call the procedure Modified Sto-
chastic Probing Method to solve Problem(P1)
to get the best loop flows.

Step 2. Detect link that is required to have
a parallel link.

Step 3. Compute flow in the existing link.

Step 4. Calculate flow and continuous diam-
eter for new parallel link.

Step 5. Decompose continuous diameter into
adjacent discrete diameters in series.

3. Application to a Typical Pipe Network

The New York city water supply problem
is solved to expand the parallel links of the
system with the proposed procedure. The solu-

tion for the New York water distribution
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system problem as shown in Figure 1 has
been attempted before by Schaake and Lai
(1969), Quindry et al.(1981), Gessler(1982),
Bhave(1985), Morgan and Goulter(1985),
and Fupwara and Khang(1990). These au-
thors report improvements in the optimal so-
Schaake and Lai,
Quindry et al, Gessler, Bhave, and Morgan

lution  progressively.
and Goulter obtained optimal costs of $77.
611(106), $63.581(106), $41.2(106), $40.
18(106), and $39.229(106), respectively.
This progression is the result of finding bet-
ter local optima with the improvements in the
solution algorithms. As given in the previous
studies, the following data will be used:
Hazen—Willilams; C=100 for all links; conver-
sion factor K=10.7 for flows in ¢ms and di-
ameters in meters; exponents for discharge
and diameter are 1.85 and —4.87 respectively.

The cost per unit length of pipes is given by

1.1d"* in which d is the diameter in inches.

Link length, diameter for existing pipes, mini-
mum heads, and demands are given in Table
1.

For known flow rates, Problem(Pl) 1s a
linear program. To solve the New York city
water supply problem with the proposed pro-
cedure, First, the algorithm TREESEARCH
(Loganathan et al, 1990) is applied to obtain
the optimal tree layout and the optimal tree
link flows. The global tree network is ob-
tained by deleting link 10 and 20. The opti-
mal tree link flows are given in Table 2. The
procedure Modified Stochastic Probing method
is then implemented to search the feasible re-
gion beginning with the perturbed optimal
tree link flows as the initial flows. The opti-
mal loop flows in ems(4Q,, 4Q.)=(4.0776, 0.
2378) are obtained with the method. Once
the optimal link flows are obtained, the prob-

lem(P1) is again solved with the restriction
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Fig. 1. New York Water Distribution System

Table 1. Node and Link Data of New York City Water Distribution Network

Node Demand Minimum Link Length Diameter
Number Head Number
cms m m m

1 —57.1293 91.44 1 3535.68 4.572
2 2.6165 77.72 2 6035.04 4.572
3 2.6165 77.72 3 2225.04 4.572
4 2.4975 77.72 4 2529.84 4.572
5 2.4975 77.72 5 2621.28 4.572
6 2.4975 77.72 6 5821.68 4.572
7 2.4975 77.72 7 2926.08 - 3.353
8 2.4975 77.72 8 3810.00 3.353
9 4.8167 77.72 9 2926.08 4.572
10 0.02832 77.72 10 3413.76 5.182
11 4.8138 77.72 11 4419.60 5.182
12 3.3159 77.72 12 3718.56 5.182
13 3.3159 77.72 13 7345.68 5.182
14 2.6165 77.72 14 6431.28 5.182
15 2.6165 77.72 15 4724.40 5.182
16 4.8138 79.25 16 8046.72 1.829
17 1.6282 83.15 17 9509.76 1.829
18 3.3159 77.72 18 7315.20 1.524
19 3.3159 77.72 19 4389.12 1.524
20 4.8138 77.72 20 11704.32 1.524

21 8046.72 1.829
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Table 2. Optimal Tree Link Flows for New York
System

Link Number Flow Link Number Flow
cms cms
1 29.005 12 19.5755
2 26.3885 13 22.8914
3 23.7720 14 25.5079
4 21.2745 15 28.1243
5 18.7769 16 1.6282
6 16.2794 17 6.6318
7 13.7818 18 3.3159
8 11.2843 19 4.8139
9 1.6565 20 0.0
10 0.0 21 4.8139
11 9.6277

that an existing pipe should not be under-
sized. The to Problem(P1) then
shows which link is required to add a parallel
link.

Parallel expansion of this system 1is dis-

solution

cussed in the following. From the solution to
Problem(P1) as shown in Table 3, links 7,
16, 17, 18, 19, and 21 are required to have
parallel links because one of the split seg-
ments of each link is larger than an existing
diameter of link. From the solution to Prob-
lem(P1), the optimal head loss hy; , and the
optimal(total) flows Qr ., , are known. There-
fore the flow in an existing link is solved by
the following equation:

h/(’J):lO"?L(:.;) (Q(i,i)o/C)l 852 D(‘4.87

Lo Where @
.p0 is the flow in existing link, D o is the
existing diameter of pipe, and L , the length
of link. Once the flow in the existing link is
computed, the flow in the parallel pipe @ ;~
is computed from Qr =@ .+ « v and
therefore the diameter for the parallel pipe

can be computed from hy ,=10.7L; ,(Q yn/
L S

e in which subscript N indicates
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new parallel pipe. The parallel pipe is then
decomposed into discrete diameter pipes in se-
ries as.

hm,]; = 10'7L(‘-‘)(Q(1,|>N/C)l gszD‘4.87

(LN
—4.87
1(1,d)

+10.7Ls (Qu n/100)# D *%7

2(1, )

=10.7Liq.p (Qu.in/C)'** D

and it follows
-4.87

LD :L1D~4.87+L2D—4.87

(N 1.9 2(1,4)
in which subscripts 1 and 2 denote split
segments with D, ) <Dg v <Dz

Finally the solution for this system is re-
checked for hydraulic feasibility. Complete
results are documented in Tables 4, 5 and 6.

The solution reported by Fujiwara and Khang
(1990), is infeasible to their own set of pa-
rameters. This 1s easily verified by using the
optimal flows and optimal diameters of
Fujiwara and Khang(see their Tables 5 and
6, p. 547). The solution fails to yield zero
head loss for the large loop and violates mini-
mum heads for nodes 16, 17, and 19. For ex-
ample they report flow in link 10 to be 3.
6614 cms and its diameter is 5.182 meters.
Therefore, using the given parameters and
length of the link 3,413.76 m, the head loss
in link 10 is
huo=10.7(3,413.76)(3.6614/100)'85(5.182) ~**
=0.027m, Using the head value at node 11,
H,,=83.314 m, the head value at node 9 is
obtained as Hy,=83.287 m.

This value is clearly different from 83.226
m obtained from

hs=10.7(3,810)(6.9829/100)" #(3.353) ~* ¥ =
0.81m and the head at node 8,

Hs=84.036 m proving the improper diame-
ter selection for the reported parameter val-

ues.
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Table 3. Solution to Problem(P1)

Table 4. Optimal Heads for New York System

However, links 7, 16, 19, and 21 can be
easily redesigned with the given information.
By setting the sum of head losses equal to
zero for the larger loop one can obtain the
head loss for link 7. Because the flow in link
7 is 9.4805 cms, one can obtain the equiva-
lent diameter for link 7 which should be de-
composed to account for the existing link of
diameter 3.353 meters and a parallel pipe is
provided. Also, Table 5 of Fujiwara and
Khang contains typographical errors for flows
in links 5 and 12 which should be 14.4756

#osdk 2% 1095%F 48

Link Flow |Diameter| Length |Headloss Node Demand | Min. Head Optimal Head
cms m m m Number cms m m

1 24.9247 4.572| 3535.68 1.7496 1 —57.1293 91.44

2 22.3109 4.572| 6035.04 2.4323 2 2.6165 77.72 89.69

3 19.6944 4.572| 2225.04 0.7132 3 2.6165 77.72 87.26

4 17.1969 4.572 1 2529.84 0.6309 4 2.4975 77.72 86.54

5 14.6993 4.572 | 2621.28 0.4877 5 2.4975 77.72 85.91

6 12.2018 4.572 | 5821.68 0.7681 6 2.4975 77.72 85.43

7 9.7042 3.353 454.03 0.1768 7 2.4975 77.72 84.66

7 9.7042 4572 | 2472.05 0.2134 8 2.4975 77.72 84.27

8 7.2067 3.353 | 3810.00 0.8595 9 4.8139 77.72 83.41

9 1.6565 4.572 | 2926.08 0.0091 10 0.0283 77.72 83.40

10 3.8398 5.182 | 3413.76 0.0274 11 4.8139 77.72 83.44

11 13.7054 5.182 | 4419.60 0.3932 12 3.3519 77.72 83.83

12 23.6531 5.182 | 3718.56 0.9083 13 3.3519 77.72 84.74

13 26.9690 5.182 | 7345.68 2.2860 14 2.6165 77.72 87.02

14 29.5855 5.182 | 6431.28 2.3744 15 2.6165 77.72 89.40

15 32.2020 5.182 | 4724.40 2.0422 16 4.8139 79.25 79.25

16 1.6282 2.743 | 4112.43 0.1585 17 1.6282 83.15 83.15

16 1.6282 3.048 | 3934.29 0.0914 18 3.3159 77.72 79.58

17 6.6318 2.743 | 6422.27 3.3010 19 3.3159 77.72 77.72

17 6.6318 3.048 | 3087.49 0.9510 20 4.8139 77.72 79.47

18 3.3159 2.438 | 7315.20 1.8532

19 5.0517 2.134 1 3053.95| 3.2278 cms and 23.8768 cms to satisfy continuity. By
19 5.0517 2.438| 1335.17| 0.7376 setting minimum heads for nodes 16, 17, and
20 0.2379 1.524 |11704.32 | 0.2225 19 and using the reported flows with the
21 4.5760 1.829| 32897| 0.6126 above correction and the rest of the optimal
21 4.5760 2438 | 7717.75| 3.5448 diameters, the necessary links are redesigned.

However, the cost of this feasible design for
the reported flow pattern in Fujiwara and
Khang(Table 5, p. 547) is around 40.0 mil-
lion dollars. In this study, the procedure Mod-
ified Stochastic Probing Method yields a cost
of 38.041 million dollars which is an improve-
ment over the current best result of 39.
229million dollars by Morgan and Goulter
(1985), as shown in Figure 2.

4. Summary
The modified stochastic probing method ite-
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Table 5. Optimal Solution for New York System

Link Length Optimal Head Exist New Split pipe Existing New
No. m flow, Loss, ing Dia. Length, Links Links
cms m m m m $ million $ millon
1 3535.68 24.9274 1.7496 4.572 7.9924
2 6035.04 22.3109 2.4323 4.572 13.6422
3 2225.04 19.6944 0.7132 4.572 5.0297
4 2529.84 17.1969 0.6309 4.572 5.7187
5 2621.28 14.6993 0.4877 4.572 5.9254
6 5821.68 12.2018 0.7681 4572 13.1599
7 2926.08 9.7042 0.1768 3.353 3.048 2713.35 4.5024 4.0394
0.2134 3.353 212.73
8 3810.00 7.2067 0.8595 3.353 5.8625
9 2926.08 1.6565 0.0091 4572 6.6144
10 3413.76 3.8398 0.0274 5.182 9.0048
11 4419.60 13.7054 0.3932 5.182 11.6580
12 3718.56 23.6531 0.9083 5.182 9.8088
13 7345.68 26.9690 2.2860 5.182 19.3764
14 6431.28 29.5855 2.3744 5.182 16.9644
15 4724.40 32.2020 2.0422 5.182 12.4620
16 8046.72 1.6282 0.1585 1.829 | 2.438 6241.10 5.8344 8.6329
0.0914 - 2.743 1805.62
17 9509.76 6.6318 3.3010 1.829 | 2.438 9444.49 6.8952 9.8696
0.9510 - 2.743 65.27
18 7315.20 3.3159 1.8532 1524 | 2.134 7085.60 4.2240 6.4449
- 2.438 229.60
19 4389.12 5.0517 3.2278 1.524 | 1.829 4171.82 2.5344 3.2152
0.7376 - 2.134 217.30
20 11704.32 0.2379 0.2225 1.524 6.7584
21 8046.72 4.5760 0.6126 1.829 | 1.829 8013.41 5.8344 5.8394
3.5448 - 2.134 33.31
Total cost: $ million 179.8028 38.0413

Table 6. Optimal Flows of Links Needed Parallel
Pipes for New York System

Link Existing Link Flow | Parallel Pipe
Number cms Flow cms
7 5.4224 4,2818
16 0.5004 1.1279
17 2.1147 45171
18 0.9625 2.3534
19 1.9139 3.1378
20 2.2866 2.2894
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ratively improves a current optimal solution
by searching successive better loop flows and
allows to escape from the region of attraction
of local minimum at each stage. As shown in
the procedure of the method, one of the
advantages in this method avoids the cooling
schedule of annealing compared with the sim-
ulated annealing method. The New York City

water distribution system is re—solved with



91.44
4‘5'72$ource ngd1e8:2

15 89.40

77.72

: Link flow in cms
: Diameter in meters
: Head ot node in meters

Table 2. Optimal Solution for New York System by Proposed Method

the present approach, yielding least cost de-
signs which are better than the previously re-
ported designs in the literature. The results
from implementing the method to the sample
pipe network show that even the extra val-
ues of locations(loop flows) are initially cho-
sen, the convergence for a near global opti-
mum is successful.
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