Abstract
A series of cubical triaxial tests with three independent principal stresses was per- formed on Baekma river sand( # 40~100). It was found that the major principal strain at failure remained approximately constant for b values larger than about 0.3 for both the drained and undrained condition, and thereafter increased as b value decreased. The test results showed that the direction of the strain increment at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results were thus not in agreement with the normality condition from classic plasticity theory. Howev- er, it was found that the projections of the plastic strain increment vectors on the octahe- dral plane were perpendicular to the failure surface in that plane. Failure strength in terms of effective stress anlaysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion. The effective stress failure surfaces for both the drained and undrained condition were estimated quite well by use of Lade's failure criterion.