Development of robot control system using DSP

DSP를 이용한 로보트 제어시스템 개발

  • Lee, Bo-Hee (Dept.of Operation Engineering, Inha University) ;
  • Kim, Jin-Geol (Dept.of Operation Engineering, Inha University)
  • 이보희 (인하대학교 자동화공학과) ;
  • 김진걸 (인하대학교 자동화공학과)
  • Published : 1995.09.01

Abstract

In this paper, the design and the implementation of the controller for an articulate robot, which is developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies structures by the time-division control with TMS320C31 DSP chip. The method of control is based on the fuzzy-compensated PID control with scale factor, which compensates for the influence of load variation resulting from the various postures of the robot with conventional PID scheme. The application of the proposed controller to the robot system with DC servo-motors shows some excellent control capabilities. Also, the response characteristics of system for the various trajectory commands verify the superiority of the controller.

Keywords

References

  1. Robot Analysis and Control H.Asada;J.J.E.Slotine
  2. Control of Robot Manipulator F.L.Lewis;C.T.Abdallah
  3. Proc. IEEE Conf. Control Applications Fuzzy Logic Control of Robot Manipulator S.Banerjee;P.Y.Woo
  4. IEEE Int. Conf. Robotics and Automation v.1 A Fuzzy Logic Concept for Highly Fast and Accurate Position Control of Industrial Robots H.B.Kuntze;M.Sajidman
  5. IEEE Contr. Syst. Mag. v.9 no.3 Development of fuzzy algorithms for servo systems Y.F.Li;C.C.Lau
  6. IEEE Trans. Auto. Contr. v.39 no.1 Adaptive control of plants with unknown dead-zones G.Tao;P.V.Kokotovic
  7. Applied Nonlinear Control J.E.Slotine;W.Li
  8. IEEE Trans. Syst. Man Cybern. v.SMC-3 Outline of a new approach to the analysis of complex systems and decision processes L.A.Zadeh
  9. IEEE Trans. Syst. Man Cybern. v.SMC-17 no.6 Comparing fuzzy logic with classical controller designs K.L.Tang;R.J.Mulholland
  10. Int. J. Man-Mach. Stud. v.8 Fuzzy sets for man-machine interaction P. J. Mavicar-Whelan
  11. IEEE Trans. on Indus. Elec. v.37 no.5 Incremental fuzzy expert PID control S.Tzafestas;N.P.Papanikolopoulos
  12. Automatica v.15 A linguistic self-organizing process controller T.J.Procyk;E.H.Mamdani
  13. IEEE Conf. Cont. Applic. Fuzzy precompensation of PID controllers J.H.Kim;S.W.Lee;K.C.Kim;E.K.P.Chong
  14. Proc. of the 1993 Inter. Symp. on Intelligent Control Control of systems with deadzones using PD controllers with fuzzy precompensation J.H.Kim;J.H.Park;S.W.Lee;E.K.P.Chong
  15. IECON 93' v.1 Integrated fuzzy logic controller design M.Y.Shieh;T.H.S.Li
  16. Proc. IEEE The implementation of fuzzy algorithms for control D.A.Rutherford;G.C.Bloore
  17. LPR593DS 사용자 길잡이 한슬(주)
  18. TMS320C3X User's guide Texas Instrument
  19. Digital signal processing with C and the TMS320C30 Rulph Chassaing
  20. TMS320 Floating-point DSP optimizing C compiler user's guide Texas Instrument
  21. Robot dynamic and control Mark W. Spong;M.Vidyasagar
  22. Essential of fuzzy modeling and control Ronald R. Yager;Dimitar P.Filev
  23. 한국정밀학회논문지 v.12 no.48 개선된 퍼지보상 PID제어기 설계에 관한 연구 김진걸;이혁재