초록
본 연구는 퍼지이론을 공간분석에 적용하기 위한 이론적인 배경을 고찰하고, 퍼지 분류법의 특성에 대해 살펴본 것이다. 이를 위해 필자는 공간정보의 모호성에 대해 살펴보 고, 퍼지공간분석의 전제를 설정한 다음 퍼지분류법을 소개하였다. 그리고 퍼지분류법의 특 성을 명확히 하기 위해 경상남도 읍급이상 도시의 산업별 고용비율을 대상으로 퍼지분류를 행한 후, 퍼지분류와 전통적인 군집분석의 결과를 비교하였다. 그 결과, 공간정보의 모호성 은 구체성의 부족, 인간행태, 인내치문제, 분류기준의 부족 등에 의해 발생하는데 기존의 공 간분석기법으로는 공간의 모호성을 반영할 수 없으므로 퍼지기법을 도입한 퍼지공간분석의 필요성이 있음을 확인하였다. 퍼지분류법 중, 퍼지이산분류는 계산절차는 상대적으로 간단하 나 분류결과가 집단간의 점이성을 고려하지 못하며, 퍼지중첩분류는 분류집단간의 점이성은 고려하나 분류결과가 지나치게 많아 적절한 분류수준을 선택하기 어렵고 결과해석이 상대적 으로 난해하다는 문제점이 있음이 밝혀졌다, 또 경남의 도시기능분류는 분류기법에 따라 다 르게 이루어졌지만 창원, 울산, 마산, 진해, 김해, 양산, 웅상, 장승포, 신현으로 구성된 제조 업 군집과 단독군집 충무의 존재가 세 가지 분류 모두에서 공통적으로 확인되었다.
Classification of spatial units into meaningful sets is an important procedure in spatial analysis. It is crucial in characterizing and identifying spatial structures. But traditional classification methods such as cluster analysis require an exact database and impose a clear-cut boundary between classes. Scrutiny of realistic classification problems, however, reveals that available infermation may be vague and that the boundary may be ambiguous. The weakness of conventional methods is that they fail to capture the fuzzy data and the transition between classes. Fuzzy subsets theory is useful for solving these problems. This paper aims to come to the understanding of theoretical foundations of fuzzy spatial analysis, and to find the characteristics of fuzzy classification methods. It attempts to do so through the literature review and the case study of urban classification of the Cities and Eups of Kyung-Nam Province. The main findings are summarized as follows: 1. Following Dubois and Prade, fuzzy information has an imprecise and/or uncertain evaluation. In geography, fuzzy informations about spatial organization, geographical space perception and human behavior are frequent. But the researcher limits his work to numerical data processing and he does not consider spatial fringe. Fuzzy spatial analysis makes it possible to include the interface of groups in classification. 2. Fuzzy numerical taxonomic method is settled by Deloche, Tranquis, Ponsard and Leung. Depending on the data and the method employed, groups derived may be mutually exclusive or they may overlap to a certain degree. Classification pattern can be derived for each degree of similarity/distance $\alpha$. By takina the values of $\alpha$ in ascending or descending order, the hierarchical classification is obtained. 3. Kyung-Nam Cities and Eups were classified by fuzzy discrete classification, fuzzy conjoint classification and cluster analysis according to the ratio of number of persons employed in industries. As a result, they were divided into several groups which had homogeneous characteristies. Fuzzy discrete classification and cluste-analysis give clear-cut boundary, but fuzzy conjoint classification delimit the edges and cores of urban classification. 4. The results of different methods are varied. But each method contributes to the revealing the transparence of spatial structure. Through the result of three kinds of classification, Chung-mu city which has special characteristics and the group of Industrial cities composed by Changwon, Ulsan, Masan, Chinhai, Kimhai, Yangsan, Ungsang, Changsungpo and Shinhyun are evident in common. Even though the appraisal of the fuzzy classification methods, this framework appears to be more realistic and flexible in preserving information pertinent to urban classification.