Extreme spirallike products

  • Lee, Suk-Young (Department of Mathematics, Ewha Womens University) ;
  • David Oates (Department of Mathematics, University of Exeter)
  • 발행 : 1995.10.01

초록

Let $S_p(\alpha)$ denote the class of the Spirallike functions of order $\alpha, 0 < $\mid$\alpha$\mid$ < \frac{\pi}{2}$ Let $\Pi_N$ denote the subset of $S_p(\alpha)$ consisting of all products $z\Pi^N_{j=1}(1-u_j z)^{-mt_j}$ where $m = 1 + e^{-2i\alpha},$\mid$u_j$\mid$ = 1, t_j > 0$ for $j = 1, \cdots, N$ and $\sum^{N}_{j=1}{t_j = 1}$. In this paper we prove that extreme points of $S_p(\alpha)$ may be found which lie in $\Pi_N$ for some $N \geq 2$. We are let to conjecture that all exreme points of $S_p(\alpha)$ lie in $\Pi_N$ for somer $N \geq 1$ and that every such function is an extreme point.

키워드