A functional central limit theorem for positively dependent random vectors

  • Published : 1995.07.01

Abstract

In this note, we extend the concepts of linearly positive quadrant dependence to the random vectors and prove a functional central limit theorem for positively quadrant dependent sequence of $R^d$-valued or separable Hilbert space valued random elements which satisfy a covariance summability condition. This result is an extension of a functional central limit theorem for weakly associated random vectors of Burton et al. to positive quadrant dependence case.

Keywords