A tightness theorem for product partial sum processes indexed by sets

  • Published : 1995.02.01

Abstract

Let N denote the set of positive integers. Fix $d_1, d_2 \in N with d = d_1 + d_2$. Let X and Y be real random variables and let ${X_i : i \in N^d_1} and {Y_j : j \in N^d_2}$ be independent families of independent identically distributed random variables with $L(X) = L(X_i) and L(Y) = L(Y_j)$, where $L(\cdot)$ denote the law of $\cdot$.

Keywords