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A TIGHTNESS THEOREM FOR PRODUCT
PARTIAL SUM PROCESSES INDEXED BY SETS

Duc Hun HoNG AND JoONG Sung KwoN

1. Introduction

Let N denote the set of positive integers. Fix d1,da € N with d =
di1 +dz. Let X and Y be real random variables and let {Xi:ie Nd‘}
and {Y; : j € N%?} be independent families of independent identically
distributed random variables with £(X) = £/ X;) and L(Y) = L(Y;),
where £(-) denote the law of -.

We define the product partial sum process 7}, corresponding to { Xi}
and {Yj} indexed by subsets of the d-dimensional unit cube I¢ by

To(X,Y, A) = z XiYjb(i/nj/my A)s AcT?,
li[<n,[j|<n

where (i/n,j/n) = (i1/n,iz/n, - ,ig, /n,j1/n,52/n, -+ ,ja,/n) and
8G/nj/n)(A) = 1 or 0 depending on (i/n,j/n) € A or not with i’s
and j’s integers. For product partial sum processes T, laws of large
number results have been shown to hold (for example, [6], [7] under
some metric entropy condition). It is therefore quite natural to study
weak convergence problems (Central Limit Theorem) for these product
processes. We say that random elements Yy, ¥ taking values in I°°(F)
satisfies CLT iff the finite dimensional distributions of Y, converge in
law to those of Y and there exists a psedometric p on F such that
(F, p) is totally bounded and

lim sup lim sup P*( sup  [Yo(f)—Ya(g)| > e) =
5=0 m—oo  \(f,g)<b

Received November 10, 1993.

AMS 1991 subject classifications: Primary 60F05, Secondary 60G05

Key words and phrases: Weak Convergence, set indexed process, partial sum
process, product process, entropy condition, probability bound.



142 Dug Hun Hong and Joong Sung Kwon

for all € > 0.

To ensure the weak convergence of T, first we need a limiting pro-
cess, product Brownian measure, which is constructed in {8] as follows;
Let (Z1,.A1) and (Z;, A2) represent two independent Brownian mea-
sures with A; C B; N 1%, Define Z(A1 x Ap) = Z1(A1)Z2(A2) on the
field generated by A; x A,. Then, the domain of Z can be extended
beyond A; x A, to as large a subfamily A of the o—field o(A; x Az),
so that Z on A is uniformly continuous with respect to the symmetric
difference pseudo-metric d(A, B) = |[AAB|. Next we need to smooth
T, (for the reason, see [1] ) as follow: Define, for A € A,

Sa(A) =n" )" 3" X5Y;

lij<n lif<n

nA N Cyl,

the normalized smoothed product partial sum process of Ty, where
Cy is d-dimensional unit cube whose Lebesgue measure is 1 and the
upper right corner has a coordinate (i,j) with i € N4 and j € N4z,
Finally we impose some restrictions on the index family A C B(1%)
in terms of entropy condition. OQur entropy condition is the same as
the one in [8], which is conjectured there. Throughout the paper,
assume that X;’s and Yj’s are sub-Gaussian random variables. That
is, there exists some constant M and v depending on X; such that
P(X;| >z2) < M [~ e~ dt. We tried to prove the convergence of
finite dimensional distributions of T}, but unfortunately we cannot get
satisfiable results yet. In this paper thus we proves only a tightness
theorem for product partial sum processes indexed by subsets of [0, 1)¢
and based on 1.i.d. sub-Gaussian random variables.

The outline of this paper is as follow. In Sectior: 2 we derive an
exponential probability bound for S,, using conditioning and the Hans
on-Wright inequality [5], which is comparable to the bounds in {8}, and
we apply this bound to prove a tightness result in Section 3.

2. Bounds for S,

Let us begin with the Hanson-Wright inequality which is central

in deriving probability bound for S,. Suppose a;j, ¢, € N are real

numbers such that a;; = a;; and A% = 3 a2j < o0. Let A denote

t,7 1
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the matrix (|a;;|) and let ||Alj2 be the norm of A considered as an
operator on F(A). Define S := > i(XiX; - EX:X;), where EZ is
the expectation of a random variable Z. Under the assumption stated
above, the Hanson-Wright inequality is as follows.

LEMMA 2.1. ([8]) For every € > 0, there exist constants C; and C,
depending on M and vy(but not on A) such that

P(S > ¢) < exp(— min{Cie/||Al|z. C2e?/A2}).

THEOREM 2.2. For any n > 0 and for some constants K; and K,
we have

P(Sn(A) > n) < exp(—K1n/|A]Y?) + exp(— K23 /| A*/%)

where |A| denotes the Lebesgue measure of A € A.

Proof. Let F, = o(Y] : |]i| < n) be the o- algebra generated by ¥
and Sy, := Sn(A4). Since X;’s are independent sub-Gaussian of Yj’s, for
any A > 0,

E(e*57|Fp) < exp(cAin=? Z(Z YilnA N Cy))?)

lif<n [j|<n

where c is a positive constant only depending on a sub-Gaussian ran-
dom variable X;. Now

“’Z(Z |nAmc)

lil€n fij<n

> (Z Y3|nAﬂCij|)(Z kanAncm)
lil<n [ij<n kl<n

=n¢ Z Z Yij Z |TlAﬂ C;anAﬂ C;k|
l<n k<n lil<n

= Q.

Set ajx = n—¢ EIiIS" |nA N Cy||nA N Cik]. Then (@5 )| <n,|k|<n 15 @
symmetric matrix and A2 := Elj|<n,|k|<n(ajk)2 <1 < oo. Since Yj’s
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are sub-Gaussian, there exists some constant M and vy depending on
Y; such that

P(Y|>z) <M / e~ dt.

Applying the Hanson-Wright inequality we have, E(e??") < e An
for 0 < § < v/A, where ¢; is a positive constant only depending on Y;
and not on n, and 7 is constant only depending on Y;(M,~).

Now look into A?z‘ Since (Z?:] mi?/i)Q < (Z?:] 1’?‘(2?:1 y?)

A2 = p2d Z Z (Z lnA N C'UHnAﬂCik!)?

Hl<n [kj<n (i<

< n7 Z Z Z [nA N Cyl? Z |nA N Cp|?

B1<n ki< i[<n |<n
*“(Z 3 InAn Gyl )(Z 3 |n4ﬂC’1k|2>
li|<n jj<n JkI<n H<n
= (Y Y mancR))
fl<n [<n

where we used Holder’s inequality. So that

An < Ty = n~¢ Z Z lnAN Cij|2 < 1A].
li|<n fif<n

Hence
(2.1)
E(exp(ASy)) = E[E(exp(ASy)|Fn)]

< E{exp [C/\2n_d{ Z ( Z YjlnAN Cij|)2}] < exp(e1cEAtA2).
i1<n Ll<n

To get an exponential bound for S,,, apply Chebyschev’s inequality
to (2.1),
P(S, > n) < e MrtesAiAL

where ¢y = ¢1¢? and A € [—(7/eAn) 2, (7/cAR)?].
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Let ¢(A) = —An+c2A*AZ. Then ¢(A) has a minimum value at AL =
[n/4c2A2]Y/3. Let A, = min{(r/cA,;)/2, 2"}, Then

(2.2) P(Sn > 1) < exp(—K17/AY?) + exp(—Kan*/3 JA%/?),

where Ky = 371/%2/4c1/? and K, = 3/04/3c;/3.
Since An < |A[, (2.2) becomes

P(Sn > n) < exp(—Kin/|A["?) + exp(- K2n*/* /|A]*?)

which is independent of n.

3. Main theorem

Now we are ready to prove a tightness result for smoothed product
partial sum processes. Define the pseudometric 4y on A by dx(A, B) =
MAAB) = |AAB| where A and |- | are both used to denote Lebesgue
measure. We assume that with respect to dx. A is totally bounded
with inclusion and has a convergent entropy integral. That is, first, for
every ¢ > 0 there exists a finite collection (called an e—net) A(e) of
measurable sets such that A € A implies Ay C A C A® in A(e), and
dr(A1y, AP) < ¢ for some A¢;y, A® in A(e). Second, the number of
pairs A1), A® in A(e), which we assume to be the minimum possible
and which we denote by

Ni(e, A,dy) ;= min{k > 1: there exist measurable sets
A, AP 1<i<k

such that for every A € A there is some

such that [AEZ) \Aiyl Leand Ay CAC ASQ)

satisfies

(3.1) /1 e~ H(e)de < oo.
4}
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or, equivalently, for any 8 € (0, 1)

(3.2) Y BPH(B) < co.

k>0

where H(c) = log Nt(¢, A, d)). Define the ezponent of metric entropy
of A, denoted r, by r :=inf{s > 0: H(¢) = O(¢™*) as e — 0}. If
r < 1/2, then (3.1) holds.

REMARK 3.1. Examples of index families which satisfy our met-
ric entropy assumptions include the following. Let J(a,d, M), for
a > 0,M > 0, denote the class of sets introduced in [2], whose bound-
aries are images of a-differentiable mappings of the (d — 1)-sphere into
I, with all derivatives of orders up to a uniformly bounded by M.
Then, r = (d — 1)/a; cf. [2]. A related family of sets with a -smooth
boundaries, denoted R(a,d, M), was proposed by [9] and shown there
to satisfy r = (d — 1)/a as well. Some examples of small classes of sets
are Id, the set of intervals on lower orthants; 'Pd’m, the family of all
polygonal regions in I with no more than m vertices; and €%, the set
of all ellipsoidal regions in I?. For all of these, r = 0; see [3] for P*™,
and [4] for £%. Another important classof sets which includes the last
three examples are Vapnik-Cervonenkis classes. For these, it is true
that N(e, A,dx) < Ce™" for some C and v > 0, where N is the (usual)
metric entropy, like N; but without the requirement of inclusion.

THEOREM 3.2. (Tightness Theorem) If r < 3/5, then, under (3.1)
or (3.2), and for any n > 0, we have

lim sup limsup P(sup |Sp(A) — Sn(Ax)| >n) =0.
A€eA

k—oo n—oo

Proof. Fix 8 € (0,1) and let 6 = % for any £ > 0. Let A € A,
and let Ax and A* denote the inner and the outer ¢ approximations
to A. Let > 0 be fixed and let nx = ¢/ 5D/ 2 H(55+1), where ¢ will
be chosen later. Let ky and k,, be chosen such that

kn > ko, Z ne <n/2, and nd/2 g2k /5 n/2.
k>ko
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Now let Rn(Dk,(A)) :=n~%/? Dlil<n pjj<n [Xill ¥ In(Af\ Ak, )N
Cji;|. Then

{wlRn(Dk, (4)) > 0/2, || < £7°*/and
¥ < B7%710 i, il < n} = 0.

Hence, after separating into two obvious part, we have

P*( sup |Sn(A) — Sn(Ax,)| > 77/2)

A, CACA*n
< P(IXi| > 872410 or W3] > 8710l < )
<t P(|Xi| > 87510 4t P(|Y| > F70H 1)
< 2n% exp(—B73k/% /28,) 4 2n%2 exp(—B 73k /% /26,)

where 6; and 6, are the parameters associated with sub-Gaussian ran-
dom variables X and Y, and P* denotes the outer measure induced by

P.

By the standard chaining argument, we have

1Sa(Ako) = Sn(A <2 DY [Su(Ar\ Ar41)] + Ra(Dk, (4)).
ko<k<kn

And

(3.3)
P(sup |Sn(A) — Sa(Ak,)| > 1)
AcA

< Z 2P(|Sn(Ak \ Ak41)| > forsome A€ A)
ko<k<kn

+ P(Rn(Ak,(A)) >n/2 for some A€ A).

Now, by Theorem 2.2,
P(|Sn(Ak \ Ak+1)| > nk) < dexp(—~c1 K1 H(B*¥1)). Let ¢' be such that
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K¢ > 3 with K; appearing in Theorem 2.2. Then,

<4 D0 exp(2H(B*H)) exp(~3H(B*)
ko<k<k,

+ 20" exp(2H(B*") — B73*/5 /26, ) + 2n® exp(2H(*")
_ ﬂ~3kn/5/292)

<4 5" exp(—H(B)) + 2n% exp(2H(B*) — J=35/5 129,
k>ko

+2n%2 exp(2H (%) — B3%n/5 120,).

From the assumption r < 3/5, we have

Z exp(—-H(5k+1)) < Z exp(_ﬂ—(kﬂ)r/g)’

k>ko k>ko

which is summable. Same argument shows that the second and the
third terms go to zero as n — co. This proves the Theorem.
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