A TIGHTNESS THEOREM FOR PRODUCT PARTIAL SUM PROCESSES INDEXED BY SETS

DUG HUN HONG AND JOONG SUNG KWON

1. Introduction

Let N denote the set of positive integers. Fix $d_1, d_2 \in \mathbb{N}$ with $d = d_1 + d_2$. Let X and Y be real random variables and let $\{X_i : i \in \mathbb{N}^{d_1}\}$ and $\{Y_j : j \in \mathbb{N}^{d_2}\}$ be independent families of independent identically distributed random variables with $\mathcal{L}(X) = \mathcal{L}(X_i)$ and $\mathcal{L}(Y) = \mathcal{L}(Y_j)$, where $\mathcal{L}(\cdot)$ denote the law of \cdot .

We define the product partial sum process T_n corresponding to $\{X_i\}$ and $\{Y_j\}$ indexed by subsets of the d-dimensional unit cube \mathbf{I}^d by

$$T_n(X,Y,A) := \sum_{|\mathbf{i}| < n, |\mathbf{j}| < n} X_{\mathbf{i}} Y_{\mathbf{j}} \delta_{(\mathbf{i}/n,\mathbf{j}/n)}(A), \qquad A \subset \mathbf{I}^d,$$

where $(\mathbf{i}/n, \mathbf{j}/n) = (i_1/n, i_2/n, \dots, i_{d_1}/n, j_1/n, j_2/n, \dots, j_{d_2}/n)$ and $\delta_{(\mathbf{i}/n, \mathbf{j}/n)}(A) = 1$ or 0 depending on $(\mathbf{i}/n, \mathbf{j}/n) \in A$ or not with i's and j's integers. For product partial sum processes T_n , laws of large number results have been shown to hold (for example, [6], [7] under some metric entropy condition). It is therefore quite natural to study weak convergence problems (Central Limit Theorem) for these product processes. We say that random elements Y_n , Y taking values in $l^{\infty}(\mathcal{F})$ satisfies CLT iff the finite dimensional distributions of Y_n converge in law to those of Y and there exists a psedometric ρ on \mathcal{F} such that (\mathcal{F}, ρ) is totally bounded and

$$\limsup_{\delta \to 0} \limsup_{n \to \infty} P^* \left(\sup_{\rho(f,g) < \delta} |Y_n(f) - Y_n(g)| > \epsilon \right) = 0$$

Received November 10, 1993.

AMS 1991 subject classifications: Primary 60F05, Secondary 60G05

Key words and phrases: Weak Convergence, set indexed process, partial sum process, product process, entropy condition, probability bound.

for all $\epsilon > 0$.

To ensure the weak convergence of T_n , first we need a limiting process, product Brownian measure, which is constructed in [8] as follows; Let (Z_1, \mathcal{A}_1) and (Z_2, \mathcal{A}_2) represent two independent Brownian measures with $\mathcal{A}_i \subset \mathcal{B}_i \cap \mathbf{I}^{d_i}$. Define $Z(A_1 \times A_2) = Z_1(A_1)Z_2(A_2)$ on the field generated by $\mathcal{A}_1 \times \mathcal{A}_2$. Then, the domain of Z can be extended beyond $\mathcal{A}_1 \times \mathcal{A}_2$ to as large a subfamily \mathcal{A} of the σ -field $\sigma(\mathcal{A}_1 \times \mathcal{A}_2)$, so that Z on \mathcal{A} is uniformly continuous with respect to the symmetric difference pseudo-metric $d(A, B) = |A \triangle B|$. Next we need to smooth T_n (for the reason, see [1]) as follow: Define, for $A \in \mathcal{A}$,

$$S_n(A) := n^{-d/2} \sum_{|\mathbf{i}| < n} \sum_{|\mathbf{j}| < n} X_{\mathbf{i}} Y_{\mathbf{j}} | nA \cap C_{\mathbf{i}\mathbf{j}} |,$$

the normalized smoothed product partial sum process of T_n , where C_{ij} is d-dimensional unit cube whose Lebesgue measure is 1 and the upper right corner has a coordinate (\mathbf{i}, \mathbf{j}) with $\mathbf{i} \in \mathbb{N}^{d_1}$ and $\mathbf{j} \in \mathbb{N}^{d_2}$. Finally we impose some restrictions on the index family $\mathcal{A} \subset \mathcal{B}(\mathbf{I}^d)$ in terms of entropy condition. Our entropy condition is the same as the one in [8], which is conjectured there. Throughout the paper, assume that X_i 's and Y_j 's are sub-Gaussian random variables. That is, there exists some constant M and γ depending on X_i such that $P(|X_i| > x) \leq M \int_x^{\infty} e^{-\gamma t^2} dt$. We tried to prove the convergence of finite dimensional distributions of T_n but unfortunately we cannot get satisfiable results yet. In this paper thus we proves only a tightness theorem for product partial sum processes indexed by subsets of $[0, 1]^d$ and based on i.i.d. sub-Gaussian random variables.

The outline of this paper is as follow. In Section 2 we derive an exponential probability bound for S_n using conditioning and the Hans on-Wright inequality [5], which is comparable to the bounds in [8], and we apply this bound to prove a tightness result in Section 3.

2. Bounds for S_n

Let us begin with the Hanson-Wright inequality which is central in deriving probability bound for S_n . Suppose a_{ij} , $i, j \in \mathbb{N}$ are real numbers such that $a_{ij} = a_{ji}$ and $\Lambda^2 := \sum_{i,j} a_{ij}^2 < \infty$. Let **A** denote

the matrix $(|a_{ij}|)$ and let $||\mathbf{A}||_2$ be the norm of \mathbf{A} considered as an operator on $\ell^2(\mathbf{A})$. Define $S := \sum_{ij} a_{ij} (X_i X_j - E X_i X_j)$, where EZ is the expectation of a random variable Z. Under the assumption stated above, the Hanson-Wright inequality is as follows.

LEMMA 2.1. ([8]) For every $\varepsilon > 0$, there exist constants C_1 and C_2 depending on M and γ (but not on A) such that

$$P(S \ge \varepsilon) \le \exp(-\min\{C_1\varepsilon/\|\mathbf{A}\|_2, C_2\varepsilon^2/\Lambda^2\}).$$

THEOREM 2.2. For any $\eta > 0$ and for some constants K_1 and K_2 , we have

$$P(S_n(A) > \eta) \le \exp(-K_1 \eta/|A|^{1/2}) + \exp(-K_2 \eta^{4/3}/|A|^{2/3})$$

where |A| denotes the Lebesgue measure of $A \in A$.

Proof. Let $\mathcal{F}_n = \sigma(Y_i : |\mathbf{i}| \leq n)$ be the σ - algebra generated by Y_i and $S_n := S_n(A)$. Since X_i 's are independent sub-Gaussian of Y_j 's, for any $\lambda > 0$,

$$E(e^{\lambda S_n}|\mathcal{F}_n) \leq \exp(c\lambda^2 n^{-d} \sum_{|\mathbf{i}| < n} (\sum_{|\mathbf{j}| < n} Y_{\mathbf{j}} | nA \cap C_{\mathbf{i}\mathbf{j}}|)^2)$$

where c is a positive constant only depending on a sub-Gaussian random variable X_i . Now

$$n^{-d} \sum_{|\mathbf{i}| \le n} \left(\sum_{|\mathbf{j}| \le n} Y_{\mathbf{j}} | nA \cap C_{\mathbf{j}} | \right)^{2}$$

$$= n^{-d} \sum_{|\mathbf{i}| \le n} \left(\sum_{|\mathbf{j}| \le n} Y_{\mathbf{j}} | nA \cap C_{\mathbf{i}\mathbf{j}} | \right) \left(\sum_{|\mathbf{k}| \le n} Y_{\mathbf{k}} | nA \cap C_{\mathbf{i}\mathbf{k}} | \right)$$

$$= n^{-d} \sum_{|\mathbf{j}| \le n} \sum_{|\mathbf{k} \le n} Y_{\mathbf{j}} Y_{\mathbf{k}} \sum_{|\mathbf{i}| \le n} |nA \cap C_{\mathbf{i}\mathbf{j}}| |nA \cap C_{\mathbf{i}\mathbf{k}}|$$

$$:= Q_n$$
.

Set $a_{j\mathbf{k}} = n^{-d} \sum_{|\mathbf{i}| \leq n} |nA \cap C_{i\mathbf{j}}| |nA \cap C_{i\mathbf{k}}|$. Then $(a_{j\mathbf{k}})_{|\mathbf{j}| \leq n, |\mathbf{k}| \leq n}$ is a symmetric matrix and $\Lambda_n^2 := \sum_{|\mathbf{j}| < n, |\mathbf{k}| < n} (a_{j\mathbf{k}})^2 \leq 1 < \infty$. Since Y_j 's

are sub-Gaussian, there exists some constant M and γ depending on Y_i such that

$$P(|Y_{\mathbf{j}}| > x) \le M \int_{x}^{\infty} e^{-\gamma t^2} dt.$$

Applying the Hanson-Wright inequality we have, $E(e^{\theta Q_n}) \leq e^{c_1 \theta^2 \Lambda_n^2}$ for $0 < \theta \le \tau / \Lambda_n$ where c_1 is a positive constant only depending on Y_i and not on n, and τ is constant only depending on $Y_j(M, \gamma)$. Now look into Λ_n^2 . Since $(\sum_{i=1}^n x_i y_i)^2 \leq (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2)$,

$$\begin{split} &\Lambda_{n}^{2} = n^{-2d} \sum_{|\mathbf{j}| \leq n} \sum_{|\mathbf{k}| \leq n} \left(\sum_{|\mathbf{i}| \leq n} |nA \cap C_{\mathbf{i}\mathbf{j}}| |nA \cap C_{\mathbf{i}\mathbf{k}}| \right)^{2} \\ &\leq n^{-2d} \sum_{|\mathbf{j}| \leq n} \sum_{|\mathbf{k}| \leq n} \sum_{|\mathbf{i}| \leq n} |nA \cap C_{\mathbf{i}\mathbf{j}}|^{2} \sum_{|l| \leq n} |nA \cap C_{l\mathbf{k}}|^{2} \\ &= n^{-2d} \left(\sum_{|\mathbf{i}| \leq n} \sum_{|\mathbf{j}| \leq n} |nA \cap C_{\mathbf{i}\mathbf{j}}|^{2} \right) \left(\sum_{|\mathbf{k}| \leq n} \sum_{|l| \leq n} |nA \cap C_{l\mathbf{k}}|^{2} \right) \\ &= \left(n^{-d} \left(\sum_{|\mathbf{i}| \leq n} \sum_{|\mathbf{j}| \leq n} |nA \cap C_{\mathbf{i}\mathbf{j}}|^{2} \right) \right)^{2} \end{split}$$

where we used Hölder's inequality. So that

$$\Lambda_n \le T_n := n^{-d} \sum_{|\mathbf{i}| \le n} \sum_{|\mathbf{i}| \le n} |nA \cap C_{\mathbf{i}\mathbf{j}}|^2 \le |A|.$$

Hence

$$(2.1) E(\exp(\lambda S_n)) = E[E(\exp(\lambda S_n)|\mathcal{F}_n)]$$

$$\leq E\left\{\exp\left[c\lambda^2 n^{-d}\left\{\sum_{|\mathbf{i}|\leq n}(\sum_{|\mathbf{j}|\leq n}Y_{\mathbf{j}}|nA\cap C_{\mathbf{i}\mathbf{j}}|)^2\right\}\right]\right\} \leq \exp\left(c_1c^2\lambda^4\Lambda_n^2\right).$$

To get an exponential bound for S_n , apply Chebyschev's inequality to (2.1),

$$P(S_n > \eta) \le e^{-\lambda \eta + c_2 \lambda^4 \Lambda_n^2},$$

where $c_2 = c_1 c^2$ and $\lambda \in [-(\tau/c\Lambda_n)^{1/2}, (\tau/c\Lambda_n)^{1/2}].$

Let $\phi(\lambda) = -\lambda \eta + c_2 \lambda^4 \Lambda_n^2$. Then $\phi(\lambda)$ has a minimum value at $\lambda_n^{(1)} = [\eta/4c_2\Lambda_n^2]^{1/3}$. Let $\lambda_n = \min\{(\tau/c\Lambda_n)^{1/2}, \lambda_n^{(1)}\}$. Then

(2.2)
$$P(S_n > \eta) \le \exp(-K_1 \eta / \Lambda_n^{1/2}) + \exp(-K_2 \eta^{4/3} / \Lambda_n^{2/3}),$$

where $K_1 = 3\tau^{1/2}/4c^{1/2}$ and $K_2 = 3/c^{4/3}c_2^{1/3}$. Since $\Lambda_n \leq |A|$, (2.2) becomes

$$P(S_n > \eta) \le \exp(-K_1 \eta/|A|^{1/2}) + \exp(-K_2 \eta^{4/3}/|A|^{2/3})$$

which is independent of n.

3. Main theorem

Now we are ready to prove a tightness result for smoothed product partial sum processes. Define the pseudometric d_{λ} on \mathcal{A} by $d_{\lambda}(A,B) = \lambda(A \triangle B) = |A \triangle B|$ where λ and $|\cdot|$ are both used to denote Lebesgue measure. We assume that with respect to d_{λ} . \mathcal{A} is totally bounded with inclusion and has a convergent entropy integral. That is, first, for every $\varepsilon > 0$ there exists a finite collection (called an ε -net) $\mathcal{A}(\varepsilon)$ of measurable sets such that $A \in \mathcal{A}$ implies $A_{(1)} \subset A \subset A^{(2)}$ in $\mathcal{A}(\varepsilon)$, and $d_{\lambda}(A_{(1)}, A^{(2)}) \leq \varepsilon$ for some $A_{(1)}, A^{(2)}$ in $\mathcal{A}(\varepsilon)$. Second, the number of pairs $A_{(1)}, A^{(2)}$ in $\mathcal{A}(\varepsilon)$, which we assume to be the minimum possible and which we denote by

$$N_I(\varepsilon, \mathcal{A}, d_{\lambda}) := \min\{k \geq 1 : \text{there exist measurable sets} \ A_{i(1)}, A_i^{(2)}, 1 \leq i \leq k \$$
 such that for every $A \in \mathcal{A}$ there is some i such that $|A_i^{(2)} \setminus A_{i(1)}| \leq \varepsilon$ and $A_{i(1)} \subset A \subset A_i^{(2)}$

satisfies

(3.1)
$$\int_0^1 \varepsilon^{-1/2} H(\varepsilon) d\varepsilon < \infty.$$

or, equivalently, for any $\beta \in (0,1)$

$$(3.2) \sum_{k>0} \beta^{k/2} H(\beta^{k+1}) < \infty.$$

where $H(\varepsilon) = \log N_I(\varepsilon, \mathcal{A}, d_{\lambda})$. Define the exponent of metric entropy of \mathcal{A} , denoted r, by $r := \inf\{s > 0 : H(\varepsilon) = O(\varepsilon^{-s}) \text{ as } \varepsilon \to 0\}$. If r < 1/2, then (3.1) holds.

REMARK 3.1. Examples of index families which satisfy our metric entropy assumptions include the following. Let $J(\alpha,d,M)$, for $\alpha>0$, M>0, denote the class of sets introduced in [2], whose boundaries are images of α -differentiable mappings of the (d-1)-sphere into \mathbf{I}^d , with all derivatives of orders up to α uniformly bounded by M. Then, $r=(d-1)/\alpha$; cf. [2]. A related family of sets with α -smooth boundaries, denoted $\mathcal{R}(\alpha,d,M)$, was proposed by [9] and shown there to satisfy $r=(d-1)/\alpha$ as well. Some examples of small classes of sets are \mathcal{I}^d , the set of intervals on lower orthants; $\mathcal{P}^{d,m}$, the family of all polygonal regions in \mathbf{I}^d with no more than m vertices; and \mathcal{E}^d , the set of all ellipsoidal regions in \mathbf{I}^d . For all of these, r=0; see [3] for $\mathcal{P}^{d,m}$, and [4] for \mathcal{E}^d . Another important classof sets which includes the last three examples are Vapnik-Cervonenkis classes. For these, it is true that $N(\varepsilon, \mathcal{A}, d_{\lambda}) \leq C\varepsilon^{-v}$ for some C and v>0, where N is the (usual) metric entropy, like N_I but without the requirement of inclusion.

THEOREM 3.2. (Tightness Theorem) If r < 3/5, then, under (3.1) or (3.2), and for any $\eta > 0$, we have

$$\limsup_{k\to\infty}\limsup_{n\to\infty}P(\sup_{A\in\mathcal{A}}|S_n(A)-S_n(A_k)|>\eta)=0.$$

Proof. Fix $\beta \in (0,1)$ and let $\delta_k = \beta^k$ for any $k \geq 0$. Let $A \in \mathcal{A}$, and let A_k and A^k denote the inner and the outer δ_k approximations to A. Let $\eta > 0$ be fixed and let $\eta_k = c' \beta^{(k+1)/2} H(\beta^{k+1})$, where c' will be chosen later. Let k_0 and k_n be chosen such that

$$k_n > k_0,$$
 $\sum_{k > k_0} \eta_k < \eta/2,$ and $n^{d/2} \beta^{2k_n/5} < \eta/2.$

Now let $R_n(\Delta_{k_n}(A)) := n^{-d/2} \sum_{|\mathbf{i}| \leq n} \sum_{|\mathbf{j}| \leq n} |X_{\mathbf{i}}| |Y_{\mathbf{j}}| |n(A^{k_n} \setminus A_{k_n}) \cap C_{\mathbf{i}\mathbf{j}}|$. Then

$$\{\omega | R_n(\triangle_{k_n}(A)) > \eta/2, \quad |X_{\mathbf{i}}| \le \beta^{-3k_n/10} \text{ and }$$
$$|Y_{\mathbf{j}}| \le \beta^{-3k_n/10} \quad |\mathbf{i}|, |\mathbf{j}| \le n\} = \emptyset.$$

Hence, after separating into two obvious part, we have

$$P^* \Big(\sup_{A_{k_n} \subset A \subset A^{k_n}} |S_n(A) - S_n(A_{k_n})| > \eta/2 \Big)$$

$$\leq P(|X_{\mathbf{i}}| > \beta^{-3k_n/10} \quad \text{or} \quad |Y_{\mathbf{j}}| > \beta^{-3k_n/10}, \quad |\mathbf{i}|, |\mathbf{j}| \leq n)$$

$$\leq n^{d_1} P(|X_{\mathbf{i}}| > \beta^{-3k_n/10}) + n^{d_2} P(|Y_{\mathbf{j}}| > \beta^{-3k_n/10})$$

$$< 2n^{d_1} \exp(-\beta^{-3k_n/5}/2\theta_1) + 2n^{d_2} \exp(-\beta^{-3k_n/5}/2\theta_2)$$

where θ_1 and θ_2 are the parameters associated with sub-Gaussian random variables X and Y, and P^* denotes the outer measure induced by P.

By the standard chaining argument, we have

$$|S_n(A_{k_0}) - S_n(A)| \le 2 \sum_{k_0 \le k \le k_n} |S_n(A_k \setminus A_{k+1})| + R_n(\triangle_{k_n}(A)).$$

And

$$(3.3)$$

$$P(\sup_{A \in \mathcal{A}} |S_n(A) - S_n(A_{k_0})| > \eta)$$

$$\leq \sum_{k_0 \leq k \leq k_n} 2P(|S_n(A_k \setminus A_{k+1})| > \eta_k \quad \text{for some} \quad A \in \mathcal{A})$$

$$+ P(R_n(\triangle_{k_n}(A)) > \eta/2 \quad \text{for some} \quad A \in \mathcal{A}).$$

Now, by Theorem 2.2, $P(|S_n(A_k \setminus A_{k+1})| > \eta_k) < 4 \exp(-c_1 K_1 H(\beta^{k+1}))$. Let c' be such that

 $K_1c' \geq 3$ with K_1 appearing in Theorem 2.2. Then,

$$\leq 4 \sum_{k_0 \leq k \leq k_n} \exp(2H(\beta^{k+1})) \exp(-3H(\beta^{k+1}))$$

$$+ 2n^{d_1} \exp(2H(\beta^{k_n}) - \beta^{-3k_n/5}/2\theta_1) + 2n^{d_2} \exp(2H(\beta^{k_n}) - \beta^{-3k_n/5}/2\theta_2)$$

$$\leq 4 \sum_{k \geq k_0} \exp(-H(\beta^{k+1})) + 2n^{d_1} \exp(2H(\beta^{k_n}) - \beta^{-3k_n/5}/2\theta_1)$$

$$+ 2n^{d_2} \exp(2H(\beta^{k_n}) - \beta^{-3k_n/5}/2\theta_2).$$

From the assumption r < 3/5, we have

$$\sum_{k \geq k_0} \exp(-H(\beta^{k+1})) \leq \sum_{k > k_0} \exp(-\beta^{-(k+1)r/2}),$$

which is summable. Same argument shows that the second and the third terms go to zero as $n \to \infty$. This proves the Theorem.

References

- 1. K. Alexander and R. Pyke, A uniform limit theorem for set-indexed partial-sum processes with finite variance, Ann. Prob. 2 (1986), 582-597.
- R. M. Dudley, Metric entropy of some classes of sets with differential boundaries, J. Approx. Theory. 10 (1974), 227-236.
- 3. R. V. Erickson, Lipschitz smoothness and convergence with applications to the central limit theorem for summation processes, Ann. Prob. 9 (1981), 831-851.
- 4. P. Gaenssler, Limit theorems for empirical processes indexed by classes of sets allowing a finite dimensional parameterization, Probab. Math. Statist. 4 (1983), 1-12.
- D. L. Hanson and F. T. Wright, A bound on tail probabilities for quadratic forms in independent random variables., Ann. Math. Statist. 42 (1971), 1079-1083.
- D. Hong and J. Kwon, Laws of large numbers for products of some measures and partial sum processes indexed by sets, J. Korean Math. Soc. 30 (1993), 79-92.
- 7. J. Kwon, The law of large numbers for product partial sum processes indexed by sets, J. of Multivariate Analysis 49 (1994), 76-86.
- R. Pyke, Product Brownian measures, Analytic and Geometric Stochastics, Ed, by D.G. Kendall, Supplement to Adv. Appl. Prob. 18 (1986).
- 9. P. Révé, Three theorems of multivariate empirical processes., Lecture Note in Math. 566 (1976), 106-126.

Dug Hun Hong Department of Statistics Hyosung Woman's University Kyungbuk 713-702, Korea

Joong Sung Kwon Department of Mathematics Sun Moon University Chungnam 337-840, Korea