Abstract
Growth inhibition potency of the anthraquinones, anthraquinone-1,5-disulfonic acid and carminic acid, for Sarcoma 180 and L1210 leukemia cells in vivo and in vitro, was induced by the divalent transition metal ion, $Cu^{2+}$. On the other hand spectroscopic titration data show that the anthraquinone drugs form $Cu2^+$ chelate complexes (carminic acid : $Cu^{2+}$ = 1 : 6; anthraquinone-1,5-disulfonic acid : $Cu^{2+}$ = 1 : 3). Furthermore the $Cu^{2+}$-drug complexes associate with DNA to form the $Cu^{2+}$-anthraquinone-DNA ternary complexes. The formation of the complexes was further supported by the $H_2O_2-dependent$ DNA degradation, which can be inhibited by ethidium bromide, caused by the $Cu^{2+}$-drug complexes. It is likely that the $Cu^{2+}$-mediated cytotoxicity of the anthraquinone drugs is related with the $Cu^{2+}-mediated$ binding of the anthraquinone drugs to DNA and DNA degradation.