DOI QR코드

DOI QR Code

Preparation and Structure of Re$({\equiv}NC_6H_5)(PPh_3)(PR_3)Cl_3,\;PR_3=PMe_3,\;P(OMe)_3$

  • Kim, Young-woong (Department fo Chemistry, Sung Kyun Kwan University) ;
  • Jung, June-ho (Department fo Chemistry, Sung Kyun Kwan University) ;
  • Park, Hee-sook (Department fo Chemistry, Sung Kyun Kwan University) ;
  • Lee, Soon W. (Department fo Chemistry, Sung Kyun Kwan University)
  • Published : 1994.10.20

Abstract

Reactions of mer, trans-$Re({\equiv}NC_6H_5)(PPh_3)_2Cl_3$, I, with $PMe_3$ and $P(OMe)_34 at room temperature, led to mer, trans-$Re({\equiv}NC_6H_5)(PPh_3)(PMe_3)Cl_3$, II, and fac-$Re({\equiv}NC_6H_5)(PPh_3)(P(OMe)_3)Cl_34, III, respectively. The crystal structures of II and III were determined through X-ray diffraction. Ⅱ crystallizes in the orthorhombic system, space group $Pna2_1$ with cell parameters a=19.379(4) ${\AA}$, b=11.867(2) ${\AA}$, c = 12.676(3) ${\AA}$, and Z = 4. Least-squares refinement of the structure led to a $R(wR_2)$ factor of 0.0251 (0.0621) for 2203 unique reflections of $I>2{\sigma}(I)$ and for 306 variables. III crystallizes in the monoclinic system, space group $P2_1/n$ with cell parameters a=11.399(3) ${\AA}$, b=14.718(4) ${\AA}$, c=17.558(5) ${\AA}$, ${\beta}=97.79(2){\circ}$, and Z=4. Least-squares refinement of the structure led to a $R(wR_2)$ factor of 0.0571 (0.1384) for 3739 unique reflections of $I>2{\sigma}(I)$ and for 344 variables. Structural studies showed that the relative orientations of the two phosphines in both complexes are different, probably due to the differences in the coordinating abilities between $PMe_3$ and $P(OMe)_3$ to the 5-coordinate fluxional intermediate.

Keywords

References

  1. Metal-Ligand Multiple Bonds Nugent, W. A.;Mayer, J. M.
  2. J. Chem. Soc. Chem. Commun. Chatt, J.;Diworth, J. R.
  3. Bull. Korean Chem. Soc. v.15 Kim, Y-W.;Jung, J-H.;Lee, S. W.
  4. SHELXL-93 Sheldrick, G. M.
  5. Acta Cryst. v.A46 Sheldrick, G. M.
  6. J. Chem. Soc. Chatt, J.;Garforth, J. D.;Johnson, N. P.;Rowe, G. A.
  7. Principles and Applications of Organotransition Metal Chemistry Collman, J. P.;Hegedus, L. S.;Norton, J. R.;Finke, R. G.
  8. Inorg. Chim. Acta. v.18 Cenini, S.;La Monica, G.
  9. J. Chem. Soc. Commun. Maata, E. A.;Du, Y.;Rheingold, A. L.
  10. Coord. Chem. Rev. v.31 Nugent, W. A.;Haymore, B. L.
  11. J. Am. Chem. Soc. v.114 Gray, S. D.;Smith, D. P.;Bruck, M. A.;Wigley, D. E
  12. J. Am. Chem. Soc. v.113 Glueck, D. S.;Wu, J.;Hollander, F. J.;Bergman, R. G.
  13. Catal. Today v.10 Perot, G.
  14. Inorg. Chem. v.26 Bakir, M.;Fanwick, P. E.;Walton, R. A.
  15. J. Chem. Soc., Dalton Trans. Johnson, N. R.;Pickfold, Martin, E. L.
  16. Comprehensive Coordination Chemistry v.2 Chisholm, M. H.;Rothwell, I. P.;Wilkinson, G.(Ed);Gillard, R. D.(Ed);J. A. McCleverty(Ed)
  17. J. Chem. Soc. Dalton Trans. Orpen, A. G.;Brammer, L.;Allen, F. H.;Kennard, O.;Watson, D. G.;Taylor, R.
  18. The Organometallic Chemistry of the Transition Metals Crabtree, R. H.
  19. Inorganic Chemistry Huheey, J. E.;Keiter, E. A.;Keiter, R. L.
  20. Chem. Rev. v.77 Tolman, C. A.
  21. Acta Cryst. v.C40 Forellini, E.;Casellato, U