Design and Analysis of Computer Experiments with An Application to Quality Improvement

품질 향상에 적용되는 전산 실험의 계획과 분석

  • Jung Wook Sim (Department of Statistics, Chonnam National University, 300 Yongbong-dong, Buk-ku, Kwangju 500-757, Korea) ;
  • Jeong Soo Park (Department of Statistics, Chonnam National University, 300 Yongbong-dong, Buk-ku, Kwangju 500-757, Korea) ;
  • Jong Sung Bae (Department of Statistics, Chonnam National University, 300 Yongbong-dong, Buk-ku, Kwangju 500-757, Korea)
  • Published : 1994.02.01

Abstract

Some optimal designs and data analysis methods based on a Gaussian spatial linear model for computer simulation experiments are considered. For designs of computer experiments, Latin-hypercube designs and some optimal designs are combined. A two-stage computational (2-points exchange and Newton-type) algorithm for finding the optimal Latin-hypercube design is presented. The spatial prediction model which was discussed by Sacks, Welch, Mitchell and Wynn(1989) for computer experiments, is used for analysis of the simulated data. Moreover, a method of contructing sequential (optimal) Latin-hypercube designs is considered. An application of this approach to the quality improvement and optimization of the integrated circuit design via the main-effects plot and the sequential experimental strategy is presented.

컴퓨터 시뮬레이션 실험을 이용한 제반 연구의 효율성을 높이기 위한 통계적 실험 계획법으로서 최적 실험법과 라틴 하이퍼큐브 계획법에 대하여 연구하여 최적 라틴 하이퍼큐브 계획법을 제시하였다. 또한 전산 실험 자료의 분석을 위하여, 공간적 예측모형을 택하여 자료로부터의 모수추정과 이 모형에 적합한 예측방법 및 최적 실험 계획법 등이 고려되었다. 최적 라틴 하이퍼큐브 실험계획법을 구성하기 위한 2단계 (2점 교환법 및 뉴톤방법) 알고리즘과 그것에 의한 결과를 제시하였고, 나아가 축차적(최적) 라틴 하이퍼큐브 계획법의 구축을 위한 한 방법을 제시하였다. 이와같은 접근법은 주요인 그림과 축차적인 계획 및 분석을 이용하여 집적회로 계획의 최적화 문제로 응용되어 결국 품질향상에 도움이 되도록 하는 실예를 통하여 그 실제적 적용성이 예증되었다.

Keywords

References

  1. IEEE Transactions on Computer-Aided-Design of Integrated Circuit and System v.11 Integrated Circuit Design Optimization using A Sequential Strategy Bernado,C.;Buck,R.;Liu,L.;Nazaret,W.;Sacks,J.;Welch,W.
  2. Statistics for Spatial Data Cressie,N.
  3. Journal of the American Statistical Association v.86 Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments Currin,C.;Mitchell,T.;Morris,M.;Ylvisaker,D.
  4. Journal of The Institute of Mathematics & Its Applications v.9 Quasi-Newton Methods for Unconstrained Optimization Gill,P.;Murray,W.
  5. Communications in Statistics, A v.9 Small Sample Sensitivity Analysis Techniques for Computer Models, with An Application to Risk Assessment(with discussion) Iman,R.;Conover,W.
  6. Technometrics v.21 A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code Mckay,M.D.;Beckman,R.J.;Conover,W.J.
  7. Technical Report An Efficient Implementation of MLE Searching Algorithm in A Gaussian Spatial Model Park,J.;Cho,W.
  8. Theses Colloquium Chonnam Univ. v.36 Analysis of Computer Experimental Data using A Bayesian Prediction Model Park,J.;Park,J.
  9. Spatial Statistics Ripley,B.
  10. Technometrics v.31 Designs for Computer Experiments Sacks,J.;Schiller,S.B.;Welch,W.J.
  11. Statistical Science v.4 Design and Analysis of Computer Experiments(with discussion) Sacks,J.;Welch,W.J.;Mitchell,T.J.;Wynn,H.P.
  12. Journal of Applied Statistics v.14 Maximum Entropy Sampling Shewry,M.;Wynn,H.
  13. Technometrics v.29 Large Sample Properties of Simulations using Latin Hypercube Sampling Stein,M.
  14. Technometrics v.34 Screening, Predicting, and Computer Experiments Welch,W.;Buck,R.;Sacks,J.;Wynn,H.;Mitchell,T.;Morris,M.
  15. Communications in Statistics-Theory & Methods v.20 A System for Quality Improvement via Computer Experiments Welch,W.;Sacks,J.
  16. Journal of Quality Technology v.22 Computer Experiments for Quality Control by Parameter Design Welch,W.;Yu,T.;Kang,S.;Sacks,J.