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Design and Analysis of Computer Experiments
with An Application to Quality Improvement?

Jung-Wook Sim, Jeong-Soo Park, Jong-Sung Bae2

ABSTRACT

Some optimal designs and data analysis methods based on a Gaussian spatial
linear model for computer simulation experiments are considered. For designs of
computer experiments, Latin-hypercube designs and some optimal designs are
combined. A two-stage computational (2-points exchange and Newton-type)
algorithm for finding the optimal Latin-hypercube design is presented. The spatial
prediction model, which was discussed by Sacks, Welch, Mitchell and Wynn
(1989) for computer experiments, is used for analysis of the simulated data.
Moreover, a method of contructing sequential (optimal) Latin-hypercube designs is
considered. An application of this approach to the quality improvement and
optimization of the integrated circuit design via the main-effects plot and the
sequential experimental strategy is presented.

1. Introduction

Modern scientific researchers often use complex computer simulation codes for theoretical
investigations because physical experiments are too expensive, as in the case of nuclear
reactor experiments, or simply impossible, as in weather modeling. Heat transfer in
engineering structure, meteorological phenomena, plasma behavior in physics and global
economic activity, for examples, are modeled mathematically often in the form of large or
complicated systems of differential equations, and computer programs are written to
evaluate the outputs of interest that result from specified inputs.

In a “‘computer simulation experiment”, observations are made on an output Y(x) by

running a computer code at various choice of input variables, X. One feature of a
computer simulation experiment, different from a physical experiment, is that the output is
often deterministic-the response is observed without measurement error. This calls for
new distinct techniques useful in modeling deterministic systems.

Since simulation codes are often computationally very expensive to run, a careful
selection of inputs is necessary for efficient analysis of the data, which leads to a design
problem for the computer simulation experiment.
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This paper deals with design and analysis of computer simulation experiments. For
designs of computer experiments, Latin-hypercube designs and some optimal designs based
on a spatial prediction model are combined in section 2. A two-stage algorithm for finding
the optimal Latin-hypercube design is described in section 3. The spatial prediction model,
which was discussed by Sacks, Welch, Mitchell and Ylvisaker (1989) for computer
experiments, is also used for analysis of the simulated data. In section 5, an application of
this approach, which is a mixture of response surface methodology and spatial statistics
(Cressie, 1991), to the quality improvement of the integrated circuit design is presented. A
method of constructing sequential (optimal) Latin-hypercube designs is considered in section
6.

2. Designs for Computer Experiments and A Spatial Model

McKay, Beckman and Conover (1979), and Iman and Conover (1980) proposed
Latin-hypercube designs (or Latin-hypercube sampling, abbreviatedly Lhd). They and
Stein (1988) showed that Lhd is generally useful and efficient for computer experiments.
Some advantages are that it is computationally cheap to construct, flexible for various input
distributions and covers the design region well without replications.

An optimal design for computer experiments which minimizes the integrated mean
squared error of prediction (IMSE) was introduced by Sacks, Schiller and Welch (1989), and
by Sacks, Welch, Mitchell and Wynn (1989, abbreviatedly SWMW). Moreover, Shewry and
Wynn (1987), and Currin, Mitchell, Morris and Ylvisaker (1989, CMMY) investigated an
entropy maximizing design for computer experiments.

These optimal designs were illustrated to be more efficient, in the sense of prediction at
the untried input sites, than factorial designs and Lhd's. However, the computational cost

of finding optimal designs is high, especially when the number of input variables d and/or
design points n are large. Thus a design which is cheap to construct, geometrically

appealing and optimal in some sense has been sought (Section 5 in CMMY, and
Easterling, 1989, in the discussion on SWMW).

In this section, by combining the advantages of both Lhd and optimal design, we
consider optimal Latin-hypercube design (OLhd) which is a Lhd optimizing a given criterion
such as IMSE or entropy.

Model-based Optimal Designs: Sacks, Schiller and Welch (1989, abbreviatedly
SSW) used a spatial stochastic model which treats the computer response Y(x) as a
realization of a random function superimposed on a regression model,

k
Y(_:g)=§18,~ filx) + Z(x), 2.1)

where j's are known functions and B’s are unknown regression coefficients.

The random process Z(.) is assumed to be a Gaussian process with mean zero and
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covariance

d
Cov(_t, u) = o2 exp{-JZ:lB,'It;-u,'IQ}, 0<a<2, (22)

between Z(t) and Z(w), for two d-dimensional inputs _£=(¢1,..,ta) and u=(u1,..,uq),
where O g is the process variance. The non-negative parameter 0 determines the
correlation structure of Z: small B reflects large correlations between nearby observations
while large 8 reflects small nearby correlations (see Figure 1 for the effect of 8 to the
prediction surface). For the smoothness of the realization of Z and the convenience of
the computation of IMSE (analytically computable), we usually set a=2,

Once a covariance function and its parameters are specified, one can predict Y(x) based
on the model (2.1) using the observations y=Y(s). For the prediction formula, define the
nXn correlation matrix V and nXkmatrix F by

V = —017 [Cov(sisi)] 1sisn, 23
z

1<j<n

and

F = [fi(s)] 1sisn,

1<I<k
where (sj,..,Sp) are the design sites (note that each design site is a d-dimensional

vector). Here V is the correlation matrix determined by observation sites (or design
sites), and F is so-called the design matrix.
For any prediction site x, the nX1 vector Ux and kX1 vector fx are defined by

ve = [Cov(syx),...,Cov(snx)l/02,

e = [, ful0)], (2.4)

respectively. Here Ux is a correlation vector between design sites Si’s and a prediction

site x. Then the best linear unbiased predictor (BLUP) of Y(x) given the observation
vector ¥y is (see SWMW or Ripley, 1981, pp. 44-58)

Peo = [osl[ ¥ g“]*[oy] 25
=feB + vV Uy - FB),

where B = (F Vv F)F Vly is the generalized least squares estimator of B. Thus
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the prediction of Y(x) in this model is interpreted as a sum of the generalized least
squares prediction of Y{x) and the quantity which is related to the observations ¥ and
the correlation vUx. This prediction (2.5) is called as ‘‘universal Kriging” in spatial

statistics literature (See Cressie, 1991 or Ripley, 1981). Here the matrix [ FV: g] is of

course invertible because V is a positive definite correlation matrix.
The mean squared error of prediction is

MSE(x) = MSE(Y(x)) = EelP(x) - Y(x)1% (2.6)

and the normalized mean squared error, mse(x)=MSE(x)/6? is

mse(x)=1-[vx fe ][; 16‘] -l[;:] @n

The main advantage of the model (2.1) is that the prediction surface interpolates the
observations because the predictor P(si) at a design point s; has mse(s;) = 0, ie,

Y(si)=Y(s:) (see Ripley, 1981, pp. 44-58, or Park and Park, 1991). This is one of the
reasons why the model is used for deterministic data analysis of computer experiments.
Figure 1 illustrates the interpolating property of the prediction (2.5) and the effects of 8 to
the prediction surface.

For a given '‘weight measure” mu on a support set &), the (normalized) integrated mean
squared error (IMSE) is

IMSE = fo mse(x) di(x) . 2.8)

Note that neither mse nor IMSE depend on the data y nor on the unknown parameters B
and 0% ‘Then the IMSE is only a function of the design sites. This makes it possible to

design an experiment before taking the data, ie., to select the observation sites (or the
design sites) which optimize some criteria such as the IMSE or the maximum mse (see
SWMW or SSW on this direction).
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Figure 1: The effect of 0 in prediction and the interpolating property at the observation
sites are illustrated with the prediction surfaces for different 0's, and a fixed =2
Twelve responses (dots) from the true function (the solid line) are observed at the
randomly selected design sites. The covariance parameter 8 works as a smoothing
parameter: smaller 8 gives more smooth prediction while large 8 gives more fluctuations
with tendency of backing to the response mean.
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In using the model (2.1) for the design and analysis of computer experiments, input
variables are usually shifted and rescaled so that the design and the prediction region are
in [-.5, 5] because we need a common scale which removes the effect of different scales

of the input variables. Thus it is not necessary to use only [-.5.5] scale. One can of
course use [0,1] or {-1,1] scale for example.

Shewry and Wynn (1987), and CMMY investigated the maximal entropy design in which
the unsampled population has minimum variability conditional on the selected design. In

the model (2.1) for fixed B, maximum entropy criterion is equivalent to maximizing the
determinant of the correlation matrix V in (2.2), which is called a D-optimality.

Even though these optimal designs are efficient and useful for computer experiments with
prediction model (2.1), the cost of design construction is computationally expensive. This is
the case especially when the sample size (n) and/or the number of input variables (d) are
large, because it is a nxd-dimensional optimization problem.

Since the response function in computer experiments is often deterministic, a design
which has many replications in some coordinates or which has points clustered on some
area may not be desirable. Actually entropy-optimal designs often have many replicated
coordinate values around the edge of the region (see Sherwy and Wynn). IMSE-optimal

designs have a tendency that design sites are clustered together for small 8, with a few

sites in the middle of the design region for large 8. These geometric phenomena usually
do not appear in Lhd which is described next.

Latin-hypercube Design: Suppose that (Gi,..,Ga) be the distribution functions of
the independent input variables ( X1i,..,Xa), and x be the i-th value of the j-th variable
X; for i=1,..n and j=1,...d. Define P=(py) to be an nXd matrix, where each column
of P is an independent random permutation of (1,..,n). Moreover let ri be nXxXd
values of i.i.d. uniform [0,1] random variables independent of P.

Then the design sites X i of a Lhd (or a random Lhd) is defined by

xi = Gi'( —,17(p 5T ). 2.9

We see that pi,..,Did determine in which “‘cell” a design site xj is located, and

ri,..,Trid determine where the design site x i is located in the cell (see Figure 1 in Stein
(1987) for an example of 2-dimensional 7-points Lhd or Figure 2(b) for an example of
9-dimensional 9-points Lhd with r§=1/2). When r;=1/2 for all i and Jj, we call this

design a midpoint Latin-hypercube design (abbreviatedly, MLhd) or a fixed Lhd, which is
used at the first stage algorithm in the next section.
McKay, Beckman and Conover (1979), and Stein (1987) showed that Lhd is more

efficient, in estimating the expected value of the response (—17) of computer experiments,
than simple random sampling.  Stein (1987) also found that the closer the response Y( x)
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is to additive in the input variables, the more Lhd helps.

Lhd has some advantages that it is computationally cheap to construct, flexible for
various input distributions and covers the design region well without replicated coordinate
values.  However, since Lhd is not related to any optimality of design, some Lhd's may
be poor in estimating expected response and/or in predicting responses at the untried input
sites.

Optimal Latin-hypercube Designs: Thus some disadvantages of both Lhd's and
optimal designs can be overcome by selecting the best Lhd which optimizes a given
criterion (entropy or IMSE): optimal Latin-hypercube design (OLhd).

When the responses Y( x) are correlated to some degree and additive in the input
variables, OLhd with an appropriate 8 in (2.2) may be a desirable design for computer
experiment, because it is still a Lhd and an optimal design. OLhd is also expected to be
robust against the misspecification of prior 08, compared to the optimal designs, because
OLhd is restricted to Lhd which could geometrically (by the blocking structure) prevent
optimal design sites from being sensitively influenced by the selected value of 8. (Here
note that the optimal design is searched for a given prior 8.)

On the other hand, OLhd loses the biggest benefit of Lhd which is ease of construction.
Thus the development of a fast algorithm for finding the OLhd is an important task.

3. Algorithm for Optimal Latin-hypercube Design

Finding an optimal Lhd using standard optimizers (eg., Newton~type nonlinear
programming routines) seems difficult, because the feasible region is disconnected. = Thus
we use a 2-stage exchange and Newton-type algorithm. The algorithm first finds an
optimal midpoint Lhd (abbreviatedly, OMLhd) which optimizes a given criteria among all

possible MLhd’s (Lhd with r§=1/2 in (29)). This procedure is equivalent to finding the
optimal permutation matrix P in (2.9).

Then it is optimally released to a ‘‘non-midpoint” Lhd, that is, finding optimal r's in
[01] without changing the obtained permutation matrix P of OMLhd. An exchange

algorithm, but exchanging 2 points at a time subject to Latin-hypercube structure, is used
for OMLhd search. Then a constrained quasi-Newton routine (Gill and Murray, 1972) is

used to construct a ‘‘sub-optimal” Lhd from the above OMLhd by varying only ri€{0,1]

instead of fixing r i=1/2. The second stage routine is easy to implement, for example by
using EO04]JBF in NAG library.

Since there are (n!) ?"! MLhd's for given n and d, it is expensive to find an OMLhd
by an exhaustive enumeration method. By the definition of MLhd, if one point is moved to
another site in the MLhd, then the point corresponding to the moved point's column or row
must move to the other site to maintain Latin-hypercube structure. (Consider
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2-dimensional MLhd, for example; see Figure 2.)
Thus two ‘‘elements” of the given design are exchanged simultaneously in this

algorithm. That is, for fixed i1 and iz (i1#i2), if Xy, is changed to X i;, then X iz,
also should be changed to Xij, for some j1 and j2=1,..,d. If we call one of such

different exchanges for fixed i1 and i2 as a switching components in the pairs i1 and iz,

then the MLhd is varied according to the switching components.

The algorithm first selects (several) active pairs which make the objective function value
smallest by excluding that pairs from the given MLhd, then it finds the best switching
components in the selected active pairs which minimizes the function value among all
possible switches in the given pairs. This procedure incorporates (several) randomly
selected pairs, and iterates until there is no improvement for all of the specified number of
active pairs. Following is the description of the first stage algorithm for finding an
OMLhd.

Step 1. For given design S and parameters, select the best active pairs which minimize
the objective function for a set of n-2 design sites where the active pairs are excluded
from S.

Step 2. Minimize the objective function over all possible exchanges of the coordinates
within the given active pairs. Repeat Step 1-2 untill no improvement of the function from
the previous one.

Step 3. After a successful stop in Step 2, select the active pairs at random which is not
the same to the previous active pairs, and return to Step 2. If no improvement in Step 2,
then stop.

By the exhaustive enumeration in Step 1, n evaluations of the objective function with

n-1 points are required. In Step 2, for an active pairs, (291-1) calculations of the
function are needed. So, if we define one iteration as an execution of both Step 1 and Step
2, then the function is evaluated n+m(2 9°1_1) times in each iteration, where m is the
number of active pairs in Step 1-2 and it takes the value between 1 and 3 in the authors’
computer program.

See Figure 2, 3 and 4 for examples of optimal Latin-hypercube designs obtained by the
above algorithm and the authors’ computer program. These designs turned out to be well

spread out and frequently almost symmetric without replications. Based on more OLhd's we
obtained, it is observed that OLhd’'s have intuitively desirable geometric properties.
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Figure 2: The IMSE-optimal midpoint Latin-hypercube designs for uniformly distributed
input variables of n=9; (a) 8=1.0 (b) 8=5.0 (c) 8=25 (d) 6=100.
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Figure 3: The entropy OMLhd for Normally distributed input variables for n

8=100. The symmetry of the design sites is geometrically interesting.
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Figure 4. The entropy OMLhd (a) and its released (by a Newton-type routine) OLhd
(b) for uniformly distributed input variables for n=16 and 0=26. See the symmetries of
design points.
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4. Analysis of Computer Experiments

After computer data have been collected at the design sites, maximum likelihood
estimators (MLE) of the model parameters are computed to build a prediction model.

Since we assume y{x) has a multivariate Normal distribution with mean FB and

covariance matrix 03 V, the likelihood function of y is

. 2.2 _\ _ _(2no%) ™2 _ _(y-FB) VNy-FB)
L(y: 8,B,0z,7¢, x) = Ty &P 2 02 ) .

When 0 and Yg are specified, the MLE of 03 is given by

0% = _rlz- (y-FB) v {y-FB),

where ﬁ is the generalized least squares estimator of B as in (25). Then -2 times the
“‘concentrated” log likelihood function (except for constants) with B and EZ plugged in is

A= nlog oz + log | V. CN))

Here, ''concentrated” refers to the fact that the likelihood has already been maximized over

B and Sg. Since the likelihood equations do not lead to a closed form solution, a numerical

optimization procedure with respect to 0 is used. We used a quasi-Newton optimizer (Gill

and Murray, 1972) in NAG library (E04KBF) with multiple initial values of 8 because of

multi-modality of the likelihood surface. Park and Cho (1994) implemented a fast algorithm
for the computation of the maximum likelihood estimates.

Some combinations of B’'s and 8's will determine the prediction model. For example,
Y(x)=Bo+Z(x) with a common 6, or with d different 0's,

Y(x)=Bo+Bix1+..+Baxa+Z(x) with a common 0, or with d different 0's.

Of course, many other models are possible. The '‘forward” or ‘‘backward” stepwise
selection procedures may be possible. See Welch et. al. (1991) for this direction. More
investigation on the model selection is anticipated.

After estimating parameters, the main effects plotting (SWMW, 1989) might be used to
summarize and investigate a fitted model. The estimated overall average of the response

Y(x) is

~ o
o= f (0 I dxn 42)

the estimated main effect of input factor x: (averaged over the other factors) is the
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function

ﬁi(x;')=f?(_x) Eidxh - o, 4.3
and the estimated interaction effect of x; and Xx; is the function
iy (i) = [ P T odew = i (x)- 5 Ge)- B (44)
h7ij

where Y(x) is the BLUP of Y( X). See Figure 5 for an example of main-effects plot
obtained for the application in the next section.

The main-effects plot is used to figure out the sensitivity of input variables to the
response. Thus it is useful for identifing and selecting the important input variables to the

output. We see from Figure 5 that the variables 3 and 1 are very effective on the response
Y while the others are not.
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Figure 5: The estimated main effect plot of X1,X3,..X13 (plotting symbols

12,...9A4,.,.D) on current (mA). The variables X3 and X1 are very effective on the

response Y while the others are not.
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5. Application: Quality Improvement via Computer Experiments

This section deals with recent work of Jerome Sacks and William Welch (Welch and
Sacks, 1991, and Welch et. al, 1990) to develope an efficient and systematic approach to
quality improvemnts via computer experiments based on the spatial prediction model
approach which was described in the previous sections. This section just illustrates how the
methodology discussed in this paper canbe usefully applied to the quality improvements.

Many products are now routinely designed with the aid of computer models. Using
relatively few runs of the computationally expensive computer model, this approach builds
approximating functions (to the computer models) to be used during product-design
optimization.

Integrated Circuit Design Optimization: Circuit performances generally depend on
designable parameters (control factors), operating conditions (environmental noise factors),
and on statistical variations of devices parameters (uncontrollable manufactruing noise
factor).

Let _x=(xi,..xd) denote the vector of varying input parameters to the circuit simulator,
all the other inputs remaining fixed. They first treat a single performance, denoted by Y,
an output current. Extension to multiple performance is available (See Bernado et. al, 1992).
They write xi=ci+u; to differentiate between the controllable and uncontrollable portions.

x=_c+_u, where ¢=(c1,..,ca) and

The performance Y is, therefore, a function of

u=(u,..,ud.

They adopt Taguchi’s objective of minimizing a loss, for example a measure of
variability around a target performance, rather than maximizing the yield. For the circuit
simulation example, the target value of the output is current 1 mA and it is the fluctuation

aroud 1 mA due to u. This suggests the loss structure
L max(g)=max 4 [Y(c+u)-1l, (5.1)

with the ultimate objective to minimize this loss by choice of c.
A description of their general approach is: select inputs at which to run the simulator,
collect the data, model Y(c+u) over the region of interest and obtain a predictor

Y(c+u). Then they minimize, over ¢, the predicted loss
L aax( )= max 4 |P(c+w-1l. 5.2)

The advantage is that 1% is invariably far cheaper to evaluate than Y, thus making it

feasible to optimize L max, the result of which can be used to estimate the optimal c.
This contrasts with other strategies (e.g., Taguchi’'s) that attempt to directly optimize
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L max or model L max. And sequential experimentations were used to obtain an accurate

predictor in the vicinity of the optimum.
The detailed steps are as follows:

Step 1. Model the performance Y by the model (2.1).

Step 2. Design an initial experiment and run the simulator to collect the data. (Actually
Latin-hypercube design was used).

Step 3. Use the data to estimate the correlation parameters in (2.2) via maximum

likelihood and obtain the BLUP ¥.

Step 4. Decompose ? into effects due to individual parameters and joint (interaction)
effects of pairs of parameters as were given by (4.2)-(4.4), and plot these main-effects (See
Figure 5).

Step 5. If the predictor is not accurate enough (e.g., if a confimatory run inducates poor
prediction), then determine a smaller region from which to select a next stage experimental
desgin, e.g., by using the plot of Step 4, and/or contour plot (Figure 6) of the objectlve
function. Repeat Steps 2-5.

Step 6. When the predictor is adequate, optimize the estimated loss based on Y, eg.,
minimize L/M;X( <) in (5.1). Do a confirmatory run. Return to Step 5 if necessary.

For a detailed application of these steps to integrated circuit design example, see Bernado
et. al. (1992), and Welch et. al. (1990). In summary, they followed the six steps in two
stages of the first 48 Latin-hypercube design points runs and 24 more Lhd points runs of
the circuit simulator, and were able to arrive at a satisfactory solution. See Figure 6 for a

contour plot of L/MA\X(_Q) used in Step 5 for searching the optimal region of input

variables.
The region in the box in Figure 6 was used as the second stage design and prediction
regions where 24 more Lhd points were selected.
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Figure 6 The contour plot of L/n-m\x, obtained from the first stage design and

prediction, as a function of input variables X1 and X3. The region in a box was used as
the second stage design and prediction regions where 24 more Lhd points were selected for

the optimization of L max.
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6. Sequential (Optimal) Latin-hypercube Designs

One may re-use, as a sequential design strategy, the design sites (and its responses) of
the first stage which were located in the second stage region instead of ignoring the design
sites. Then we may need the strategy of ‘‘sequential Latin-hypercube designs’’ in the
second stage design which seems practically useful. Moreover, the OLhd’s (instead of the
usual Lhd’s) can be used through this sequential experimentations. Especially, in Step 4 of

the previous section, one may use the estimated parameters (@) in finding the next stage
OLhd.

For updating Lhd's in a seguential manner, let a 11 points d-dimensional Lhd is given.
Suppose that we want to update nz more points, without invalidating the Latin-hypercube
structure, to construct a ni+nz point Lhd. For this purpose, first figure out the

permutation integers for the given 71 points by using the following inverse formula
obtained from (2.9).

Pi=lGilx ) x (ni+n2) + 1], i=1,..,m, j=1,..d, 6.1)

where the blaket [x] represents the biggest integer which is less than or equal to x.
Some adjustments for p i or restrictions for the number Nz may be needed to prevent the
possible replications of permutation integers in (6.1) for some J. Next, for each Jj, choose
nz integers from (1,..,n1+n2) which are not the same with the previous p i obtained in
6.1).

Then the new nz design sites are obtained by

i R
xi = Gj 1 —%—I%UZL)’ (6.2)

where i=ni+l,..,ni+nz and j=1,..,d. See Figure 7 for an example of sequential

(optimal) Lhd's with n1=9 and nz=9. The cost of constructing sequential optimal Lhd’s
turned out to be much cheaper than that of the one-time OLhd construction.

7. Concluding Remarks

We have considered the use of Latin-hypercube designs and a spatial prediction model
for design and analysis of computer experiments. As a result, optimal Latin-hypercube
design turned out to have intuitively desirable geometric properties. For analysis of the
simulated data, parameters of the spatial prediction model which approximates computer
simulation code were estimated by the maximum likelihood method. The relationships
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between inputs and outputs are visualized by the main-effects plot and contour plot.

This approach, which is viewed as a mixture of response surface methodology and
spatial statistics, will help the engineer to initially identify the improtant input parameters,
build approximating models, visualize relationships and proceed sequentially to a good
product.

The developement of a fast algorithm for finding OLhd is anticipated especially for large

n and d. Further, well implemented sequential (optimal) Latin-hypercube designs and

data analysis based on the spatial model will be very useful in the practices of the
computer simulation experimentations.

Figure 7. The entropy optimal sequential Lhd’s for ni+nz=18 and 8=25;
¢ -—— the first stage 9 points (7n1) released OLhd, and + --- the second stage
(updated) 9 points (r72) OMLhd.
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