Abstract
To estimate coefficient matrix in autoregressive model, usually ordinary least squares estimator or unconditional maximum likelihood estimator is used. It is unknown that for univariate AR(p) model, unconditional maximum likelihood estimator gives better power property that ordinary least squares estimator in testing for unit root with mean estimated. When autoregressive model contains multiple unit roots and unconditional likelihood function is used to estimate coefficient matrix, the seperation of nonstationary part and stationary part of the eigen-values in the estimated coefficient matrix in the limit is developed. This asymptotic property may give an idea to test for multiple unit roots.