Studies on the Photo-Electrochemical Properties of Ti$O_2$-x Thin Films Prepared by Air Oxidation and Water Vapor Oxidation

공기 산화와 수증기 산화에 의해 제조된 Ti$O_2$-x박막의 광전기화학적 성질에 관한 연구

  • Choi Yong-Kook (Department of Chemistry, Chonnam National University) ;
  • Jo, Gi Hyeong (Department of Chemistry, Chonnam National University) ;
  • Choi Q-Won (Department of Chemistry, Seoul National University) ;
  • Oh Jeong-Geun (Department of Chemistry, Seonam University) ;
  • Seong Jeong-Sub (Department of Chemistry, Chonnam National University)
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과) ;
  • 최규원 (서울대학교 자연과학대학 화학과) ;
  • 오정근 (서남대학교 화학과) ;
  • 성정섭 (전남대학교 자연과학대학 화학과)
  • Published : 1993.06.20

Abstract

The titanium oxide thin film was prepared by air oxidation and water vapor oxidation. The photo-electrochemical properties of the electrode was studied in 1M NaOH solution. Titanium dioxide electrodes prepared at higher temperatures were found to have slightly more negative flat band potentials and slightly higher donor densities than their low temperature counterparts. The value of flat band potential ($V_{fb}$) was obtained to be -0.95 ∼ -1.1 V by the measurement of photocurrent and Motte-Schottky plots. The photocurrent of visible region was measured in terms of single crystal filter which entirely blocks the UV radiation. The photo-response of electrodes appeared good with the measument by direct current, when the slit of great resolution was used.

티타늄 금속판을 공기산화와 수증기 산화하여 만든 Ti$O_{2-x}$ 박막을 시료로 사용하여 1M NaOH 용액에서 광전기화학적 성질을 연구하였다. 높은 온도에서 제조된 Ti$O_{2-x}$ 전극들은 낮은 온도에서 제조된 전극들보다 더 음의 값으로 주어지는 flat band potential($V_{fb}$)과 더 높은 donor density($N_D$)를 가졌다. 전극전위의 변화에 따른 광전류 측정과 Mott-Schottky plot로부터 얻은 $V_{fb}$는 -0.95 ∼ -1.1 V 사이에서 비슷한 값으로 주어졌다. 자외부 영역의 광을 완전히 차단하는 TiO2 단결정을 필터로 하여 가시부 영역의 광전류를 측정할 때 분해능이 좋은 slit를 사용한 경우 좋은 sub band gap 광반응을 볼 수 있었다.

Keywords

References

  1. Nature(London) v.238 A. Fujishima;K. Honda
  2. Bull. Chem. Soc. Jpn. v.48 A. Fujishima;K. Kohayakawa;K. Honda
  3. J. Electrochem. Soc. v.122 A. Fujishima;K. Kohayahawa;K. Honda
  4. Proc. Natl. Acad. Sci. U.S.A. v.72 M. S. Wrighton;D. S. Ginley;P. T. Wolczanski;A. B. Ellis;D. L. Morse;A. Linz
  5. J. Electrochem. Soc. v.122 K. L. Hardee;A. J. Bard
  6. Nature(London) v.257 A. J. Nozik
  7. Mater. Res. Bull. v.10 J. G. Mavroides;D. I. Tchernev;J. A. Kafalas;D. F. Kolesar
  8. J. Am. Chem. Soc. v.98 M. S. Wrighton;A. B. Ellis;P. T. Wolczanski;D. L. Morse
  9. Appl. Phys. Lett. v.38 J. G. Mavroides;J. A. Kafalas;D. F. Kolesar
  10. J. Phys. Chem. v.80 A. B. Ellis;S. W. Kaiser;M. S. Wrighton
  11. J. Electrochem. Soc. v.123 J. H. Kennedy;K. W. Frese
  12. J. Am. Chem. Soc. v.98 M. S. Wrighton;D. L. Morse;A. B. Ellis;D. S. Ginley;H. B. Abrahamson
  13. J. Chem. Phys. v.32 R. Williams
  14. J. Am. Chem. Soc. v.98 A. B. Ellis;S. W. Kaiser;M. S. Wrighton
  15. Energy Convers v.25 W. W. Anderson;Y. G. Chai
  16. Ber. Bunsenges. Phys. Chem. v.76 R. A. L. Vanden Berghe;W. P. Gomes
  17. Electrochim. Acta v.20 H. Yoneyama;H. Sakamoto;H. Tamura
  18. Appl. Phys. Lett. v.29 A. J. Nozik
  19. J. Appl. Phys. v.47 R. M. Candea;M. Kastner;R. Goodman;N. Hickok
  20. Electrochim. Acta v.27 Y. Matsumoto;T. Shimizu;E. Sato
  21. Int. J. Hydrogen Energy v.8 K. J. Harting;H. Getoff
  22. Chem. Phys. Lett. v.100 D. Miller
  23. Appl. Phys. Lett. v.30 H. Morisaki;M. Hariya;K. Yazawa
  24. Appl. Phys. Lett. v.35 F. Decker;J. F. Juliao;M. Abramovich
  25. Appl. Phys. Lett. v.39 W.-T. Kim;C.-H. Choe;Q. W. Choi
  26. J. Phys. Chem. v.86 B.-H. Chen;J. M. White
  27. J. Phys. Chem. v.90 N. Jaffrezic-Renault;P. Pichat;A. Foissy;R. Mercier
  28. J. Electroanal. Chem. v.237 D. Tafalla;P. Savador
  29. J. Phys. Chem. v.89 D. Neil Furlong;D. Wells
  30. J. Phys. Chem. v.84 K. Kong;H. Yoneyama;H. Tamura
  31. J. Phys. Chem. v.92 H. Al-Ekabi;N. Serpone
  32. Solar Engineering-1991 J. Pacheco;M. Prairie;L. Yellowhorse
  33. J. Electrochem. Soc. v.124 A. K. Ghosh;H. P. Maruska
  34. J. Electrochem. Soc. v.139 Y. K. Choi;S. S. Seo;K. H. Chjo;Q. W. Choi;S. M. Park
  35. J. Electrochem. Soc. v.128 M. A. Butler;F. Decker
  36. J. Korean Chemical Society v.18 Q. W. Choi;C. H. Choi;K. H. Chjo;Y. K. Choi
  37. CRC Handbook of chemistry and physics(71st edition) D. R. Lide(ed.)
  38. Solar Energy Conversion-A Photoelectrochemical Approach Yu. V. Pleskov
  39. J. Electrochem. Soc. v.121 F. Moller;H. J. Tolle;R. Memining
  40. Appl. Phys. v.48 M. A. Butler