The Effect of Pressure on the Electrophilic Substitution Reaction of Tetramethyltin with Iodine

Tetramethyltin과 Iodine의 친전자 치환반응에 대한 압력의 영향

  • 권오천 (한양대학교 자연과학대학 화학과) ;
  • 이훈영 (한양대학교 자연과학대학 화학과)
  • Published : 1993.06.20

Abstract

Ultraviolet spectrophotometric investigation has been carried out on the system of iododestannylation iodine and tetramethyltin in methanol. The transient CT absorption spectrum can be observed and the subsequent disappearance of CT absorption spectrum was accompained by the cleavage of tetramethyltin with iodine. From there, the rate constants for the iododestannylation were determined at 10, 25 and 35$^{\circ}C$ up to 1600 bar and the reaction rates were increased with increasing temperature and pressure. From these rate constants, the values of the activation parameters (${\Delta}V^\neq,\;{\Delta}{\beta}^{\neq},\;{\Delta}H^{\neq},\;{\Delta}S^{\neq}\;and\;{\Delta}G^{\neq}$) were obtained. The activation volumes and activation compressibility coefficients were both negativity. The activation enthalpies were positive and activation entropies had large negative values. From these values discussed in terms of solvent structure variation of transition state and mechanism. From these results, it was found that the reaction is followed with $S_E2$ mechaenism and weakened $S_E2$ mechanism nature by increasing pressure.

메탄올용매내에서 요오드와 테트라메틸주석 사이의 Iododestannylation에 대한 반응속도를 분광학적 방법으로 연구하였다. 이 결과로부터 일시적인 전하이동착물의 흡수 스펙트럼이 관찰되었으며, 흡수 스펙트럼의 후속적인 감소현상으로 요오드에 의한 테트라메틸주석의 분해반응임을 알았다. 따라서 iododestannylation에 대한 속도상수를 온도 10, 25 및 35$^{\circ}C$ 압력을 1600 bar 까지 변화시켜 가면서 측정하였으며, 이때의 반응속도상수는 온도와 압력에 따라 증가함을 알았다. 이 반응속도상수로부터 ${\Delta}V^\neq,\;{\Delta}{\beta}^{\neq},\;{\Delta}H^{\neq},\;{\Delta}S^{\neq}$${\Delta}G^{\neq}$의 값을 구하였다. 활성화 부피와 활성화 압축율계수는 모두 음의 값이며, 활성화 엔탈피는 양의 값을, 활성화 엔트로피는 음의 값을 나타내었다. 이들 값으로부터 전이상태의 용매구조변화 및 메카니즘을 규명하였다. 이러한 사실로부터 본 반응은 $S_E2$ 메카니즘이 지배적이며 압력이 증가함에 따라 $S_E2$의 성격이 약화됨을 알았다

Keywords

References

  1. Molecular Complexes R. S. Mulliken;Person
  2. Organic Charge-Transfer Complexes R. Foster
  3. Molecular Complexes M. Tamres;R. Foster(ed.)
  4. Bull. Chem. Soc. Japan v.52 R. Kuwae;T. Tanaka;K. Kawakaki
  5. Bull. Chem. Soc. Japan v.48 R. Kuwae;T. Tanaka;K. Kawakaki
  6. Molecular Complexes v.1 A. K. Colter;J. M. R. Dack;R. Foster(ed.)
  7. J. Phys. Chem. v.84 S. Fukuzumi;J. K. Kochi
  8. J. Phys. Chem. v.85 S. Fukuzumi;J. K. Kochi
  9. J. Am. Chem. Soc. v.88 J. B. Hyne;H. S. Golinkin;W. G. Laidlaw
  10. Tetra. Lett. v.35 N. S. Issacs;K. Javaid
  11. Tetra. Lett. v.25 N. S. Issacs;K. Javaid
  12. J. Basic Science v.7 O. C. Kwun;K. J. Choi;Y. H. Lee
  13. J. Korean Chem. Soc. v.37 O. C. Kwun;J. B. Kyong;Y. H. Lee
  14. Physicochemical Calculation(2nd Ed.) E. A. Guggenheim;J. E. Pure
  15. Prog. Phys. Org. Chem. v.11 M. H. Abraham
  16. Can. J. Chem. v.49 M. J. Mackinon;J. B. Hyne
  17. Inter. J. Chem. Kinetics v.1 K. J. Laidler;R. Martin
  18. Proceedings of NATO Advanced Study Institute High Pressure Chemistry H. Kelm;D. A. Palmer
  19. Bull. Chem. Soc. Japan v.45 Y. Kondo;M. Ohnishi
  20. Liquid Phase High Pressure Chemistry N. S. Issacs
  21. J. Korean Chem. Soc. v.30 O. C. Kwun;J. B. Kyong
  22. J. Korean Chem. Soc. v.32 K. J. Choi;Y. H. Lee;J. B. Kyong;J. R. Kim
  23. Trans. Faraday Soc. v.64 D. A. Lown;H. R. Thirsh;L. W. Jones
  24. Bull. Chem. Soc. Japan v.40 Y. Kondo;H. Tojima;N. Tokura
  25. The Theory of Rate Reaction S. Glasstone;K. J. Laidler;H. Eyring
  26. Bull. Chem. Soc. Japan v.43 T. Matsui;N. Tokura
  27. J. Org. Chem. v.20 J. E. Leffer