Ab Initio Studies on Hydrogen-Bonded Dimers of Fluoromethanes with Ammonia and Water

플루오르화메탄들과 암모니아 및 물과의 수소결합 이량체들에 관한 Ab Initio 연구

  • Soon-Ki Lee (Department of Chemistry, Chonnam National University) ;
  • Seung-Hoon Kim (Department of Chemistry, Chonnam National University)
  • 이순기 (전남대학교 자연과학대학 화학과) ;
  • 김승훈 (전남대학교 자연과학대학 화학과)
  • Published : 1993.04.20

Abstract

Systematic ab initio SCF calculations have been performed on the hydrogen-bonded dimers of fluoromethanes involving $CH_4,\;CH_3F,\;CH_2F_2\;and\;CHF_3$ with ammonia and water applying basis sets of 9s5p/5s and 9s5p1d/5p1d. Various ground state properties of these stable dimeric complexes have been evaluated. We compared these with corresponding properties of isolated monomers. We report equilibrium geometries, stabilization energies, dipole moments and force constants of intermolecular bonds. The effects arising as a consequence of the non-additive behavior of hydrogen bonding in chain-like oligomers are discussed. Systematic, methodical errors due to the use of the SCF approximation and the basis set dependence of the computed results are pointed out.

$CH_4,\;CH_3F,\;CH_2F_2,\;CHF_3$$NH_3$H_2O$와의 수소결합 이량체들에 대하여 9s5p/5s 및 9s5p1d/5s1p의 basis sets를 사용하여 체계적인 ab initio 계산을 하였다. 이들 이량체들의 바닥상태성질을 구하여 독립된 단위체들의 대응하는 성질과 비교하였으며, 평형기하구조, 안정화에너지, 쌍극자모멘트 및 분자간 결합의 힘상수 등을 보고하였다. 사슬형 소중합체들에서 수소결합의 비가감적 거동의 결과로부터 일어나는 여러가지 효과들을 논의하고, SCF 근사법의 사용에 따른 체계적 및 조직적인 오차들과 계산결과들의 basis sets 의존성을 지적하였다.

Keywords

References

  1. The hydrogen bond-recent developments in theory and experiments v.1-3 P. Schuster(ed.);G. Zundel(ed.);C. Sandorfy(ed.)
  2. Mordern theoretical chemistry v.4 Applications of electronic structure theory P. Kollman;H. F. Schaefer III(ed.)
  3. Topics Current Chem. v.120 A. Beyer;A. Karpfen;P. Schuster
  4. Topics Current Chem. v.120 C. Sandorfy
  5. Topics Current Chem. v.120 T. R. Dyke
  6. J. Am. Chem. Soc. v.97 P. Kollman;J. McKelvey;A. Johansson;S. Rothenberg
  7. J. Am. Chem. Soc. v.103 P. Hobza;F. Mulder;C. Dandorfy
  8. J. Mol. Struct. v.80 S. L. Pauson;A. J. Barnes
  9. J. Mol. Struct. v.107 C. Sandorfy;R. Buchet;P. Hobza;P. Ruelle
  10. J. Chem. Phys. v.84 G. T. Fraser;F. J. Lovas;R. D. Suenram;D. D. Nelson, Jr.;W. Kemperer
  11. J. Am. Chem. Soc. v.104 R. Taylor;O. Kennard
  12. J. Chem. Phys. v.58 R. M. Pitzer
  13. J. Chem. Phys. v.65 H. L. Hsu;E. R. Davidson;R. M. Pitzer
  14. J. Chem. Phys. v.65 M. Dupuis;J. Rys;H. F. King
  15. J. Comput. Phys. v.21 H. F. King;M. Dupuis
  16. J. Chem. Phys. v.42 S. Huzinaga
  17. Approximate Atomic Functions I S. Huzinaga
  18. Mol. Phys. v.17 P. Pulay
  19. Mol. Phys. v.18 P. Pulay
  20. Mol. Phys. v.21 P. Pulay
  21. J. Am. Chem. Soc. v.101 P. Pulay;G. Fogarasi;F. Pang;J. E. Boggs
  22. J. Am. Chem. Soc. v.105 P. Pulay;G. Fogarasi;G. Pongor;J. E. Boggs;A. Vargha
  23. Constants of diatomic molecules v.4 Molecular spectra and Molecular structure K. P. Huber;G. Herzberg
  24. Infrared and Raman spectra of polyatomic molecules v.2 Molecular spectra and molecular structure G. Herzberg
  25. The structure and properties of water D. Eisenberg;W. Kauzmann
  26. J. Mol. Spectrosc. v.49 G. Tarrago;M. Dong-Nhu;G. Poussigue
  27. J. Mol. Spectrosc. v.31 D. F. Eggers
  28. J. Mol. Spectrosc. v.34 E. Hirota;T. Tanaka;A. Sakakibara;T. Ohashi;Y. Morino
  29. J. Chem. Phys. v.20 J. N. Ghosh;R. Trambazulo;W. Gordy
  30. Chem. Phys. v.113 M. Kofranek;A. Karpfen;H. Lischka
  31. Chem. Phys. v.120 S. K. Lee;A. Karpfen
  32. J. Mol. Struct. v.46 S. E. Blom;A. Muller
  33. J. Phys. Chem. v.68 A. Bondi
  34. Molecular Crystals and Molecules A. I. Kitaigorodsky