DOI QR코드

DOI QR Code

Complexation of Cadmium(Ⅱ) with Humic Acids: Effects of pH and Humic Acid Origin

  • Lee, Mee-Hae (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Choi, Se-Young (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Chung, Kun-Ho (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Moon, Hi-Chung (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1993.12.20

Abstract

A comparative study on cadmium(II) complexation with three well characterized humic acids (SHA: soil humic acid from the Okchun Metamorphic Belt; AqHA: aquatic humic acid from Gorleben underground aquifer, Germany; CoHA: commercially available humic acid from the Aldrich Co.) was carried out in 0.1 M $NaClO_4$ at different solution pH(5.0, 5.5, and 6.0) using the ultrafiltration technique. The maximum binding ability (MBA) of the humic acids for cadmium(II) was observed to vary with their origins and solution pH. The results suggest that 1 : 1 complex predominates within the experimental range, and the conditional stability constants were calculated based on the assumption of cooperative binding, yielding log K values that were quite similar (CoHA: 4.17${\pm}$0.08; AqHA: 4.14${\pm}$0.07; SHA: $4.06{\pm} 0.12\;l\;mol^{-1}$ at pH 6.0) irrespective of humic acid origins or pH. By contrast a nonlinear Schatchard plot was obtained, using the cadmium(II) ion selective electrode speciation analysis method, which indicated that humic acid may have two or more classes of binding sites, with $log\;K_1\;and\;log\;K_2$ of 4.73${\pm}$ 0.08 and $3.31{\pm}0.14\;l\;mol^{-1}$ respectively.

Keywords

References

  1. ICCET Series E No. 1 The environmental impact of the rapid development of the Republic of Korea C. H. Moon;I. Thornton
  2. Environ. Technol. v.12 C. H. Moon;Y. S. Lee;T. H. Yoon
  3. Heavy metal pollution in Japan K. Kitagashi;I. Yamane
  4. Water Res. v.8 J. Gardiner
  5. Est. Coast. Mar. Sci. v.6 R. F. C. Mantoura;A. Dickson;J. P. Riley
  6. Environ. Technol. Lett. v.2 B. T. Hart
  7. Water Res. v.17 T. A. Neubecker;H. E. Allen
  8. Environ. Sci. Technol. v.16 R. A. Saar;J. H. Weber
  9. Anal. Chem. v.56 J. Buffle;C. Staub
  10. Anal. Chem. v.56 C. Staub;J. Buffle;W. Haerdi
  11. Soil Sci. Soc. Am. J. v.48 A. Fitch;F. J. Stevenson
  12. Bull. Korean Chem. Soc. v.12 H. Moon;M. H. Lee;T. H. Yoon
  13. Z. Anal. Chem. v.338 J. I. Kim;G. Buckau;G. H. Li;H. Duschner;N. Psarros
  14. Geochim et Cosmochim. Acta v.54 J. Buffle;R. S. Altmann;M. Filella;A. Tessier
  15. Biophysical chemistry: Principles, techniques and applications A. G. Marshall
  16. Water Res. v.22 J. John;B. Salbu;E. T. Gjessing
  17. Can. J. Chem. v.57 R. A. Saar;J. H. Weber
  18. Soil Sci. v.123 F. J. Stevenson
  19. Soil Sci. Soc. Am. J. v.40 F. J. Stevenson
  20. J. Inorg. nucl. Chem. v.41 C. Whitworth;G. K. Pagenkopf
  21. The significance of trace elements in solving petrogenetic problems and controversies Stability constants of metal organic matter complexes: Theoretical aspects and mathematical models A. Fitch;F. J. Stevenson;S. S. Augustithis(ed.)
  22. Soil Sci. v.123 H. Zunino;J. P. Martin
  23. Soil Sci. v.155 F. J. Stevenson;A. Fitch;M. S. Brar

Cited by

  1. Ion-Selective Electrode Potentiometry in Environmental Analysis vol.19, pp.19, 1993, https://doi.org/10.1002/elan.200703916
  2. Forward Modeling of Metal Complexation by NOM: I. A priori Prediction of Conditional Constants and Speciation vol.43, pp.8, 1993, https://doi.org/10.1021/es8015793