A Prediction Method of Wave Deformation in Harbors Using the Mild Slope Equation

완경사 방정식을 이용한 항내의 파고예측

  • 최선호 (정회원, 부산대학교 대학원 토목공학과) ;
  • 박상길 (정회원, 부산대학교 공과대학 토목공학과)
  • Published : 1993.06.01

Abstract

Since major reason of disaster in coastal area is wave action, prediction of wave deformation is one of the most important problems to ocean engineers. Wave deformations are due to physical factors such as shoaling effect, reflection, diffraction, refraction, scattering and radiation etc. Recently, numerical models are widely utilized to calculate wave deformation. In this study, the mild slope equation was used in calculatin gwave deformation which considers diffraction and refraction. In order to slove the governing equation, finite element method is introduced. Even though this method has some difficulties, it is proved to predict the wave deformation accurately even in complicated boundary conditions. To verify the validity of the numerical calculation, experiments were carried out in a model harbour of rectangular shape which has mild slope bottom. The results by F.E.M. are compared with those of both Lee's method and the experiment. The results of these three methods show reasonable agreement.

해안에서 발생하는 재해의 큰 원인은 파랑작용에 기인되기 때문에 해양 기술자는 정확한 파랑변형을 예측하는 것이 매우 중요하다. 파랑변형의 주요인은 간수효과, 반사, 회석, 굴석, 산란, 방사등을 들 수 있다. 최근, 파랑변형에 대하여 수치모델이 이용되고 있다. 본 연구는 굴석과 회석을 동시에 고려할 수 있는 완경사방정식을 이용하여 유한요소법으로 수치모델을 수립했다. 이 방법은 복잡한 경계조건을 갖는 해안에 정확한 파랑예측을 할 수 있는 장점이 있지만 몇 가지의 개선해야할 문제점도 있는 것으로 나타났다. 본 계산결과를 검정하기 위해 모형실험을 실시했다. 완경사 방정식을 유한요소법으로 계산한 계산값과 Lee의 방법(Helmholtz 방정식을 유한차분법으로 수치계산한 방법)으로 계산한 값, 그리고 실험값과 비교한 결과 타당성있는 일치를 얻었다.

Keywords

References

  1. Paper 37, Institude of Hydrodynamics and Hydrulic Engineering, Technical Univ. of Demark A Finite Element Model for Water-Wave Diffraction Including Boundary Absorption and Bottom Friction BEHRENDT,L.
  2. Publication No.163, Delft Hydraulics Laboratory Mathematical Models for Simple Harmonic Linear Water Wave Diffraction and Refraction BERKHOFF,J.C.W.
  3. Int. Jour. For Numerical Methods in Engineering v.11 Diffraction and Refraction of Surface Wave Using Finite and Infinite Elements BETTES,P.;O.C.ZIENKIEWICZ
  4. Proc. 13th. ASCE A Method of Numerical Analysis of Wave Propagation-Application of Wave Diffraction and Refraction ITO,Y.;TANIMOTE,K.
  5. K.S.C.O.E. v.2 no.1 Computation of wave height distribution inside a harbour using time-dependent mild slope equation KWAK,M.S.;Hong,K.P.;Pyun,C.K.
  6. J. of Fluid Mechanics v.15 no.2 Wave Induced Oscillation in Harbour of Arbitrary Geometry LEE,J.J.
  7. Central Research Institude of Electric Power Industry, Japan Rep., No. 384041 Two Dimensional Wave Calculation Method Based on Unsteady Mild Slope Equations MARUYAMA,K.;KAJIMA,R.
  8. J. of Fluid Mechanics v.95 no.1 On the Parabolic Equation Method for Water Wave Propagation RADDER,A.C.
  9. JWPCO, ASCE v.111 no.1 A Harbour Ray Model of Wave Refraction-Diffraction SOUTHGATE,H.