The Effect of the Belief Systems on the Problem Solving Performance of the Middle School Students

중학생의 신념체계가 수학적 문제해결 수행에 미치는 영향

  • Published : 1992.12.01

Abstract

The primary purpose of the present study is to provide the sources to improve the mathematical problem solving performance by analyzing the effects of the belief systems and the misconceptions of the middle school students in solving the problems. To attain the purpose of this study, the reserch is designed to find out the belief systems of the middle school students in solving the mathematical problems, to analyze the effects of the belief systems and the attitude on the process of the problem solving, and to identify the misconceptions which are observed in the problem solving. The sample of 295 students (boys 145, girls 150) was drawn out of 9th grade students from three middle schools selected in the Kangdong district of Seoul. Three kinds of tests were administered in the present study: the tests to investigate (1) the belief systems, (2) the mathematical problem solving performance, and (3) the attitude in solving mathematical problems. The frequencies of each of the test items on belief systems and attitude, and the scores on the problem solving performance test were collected for statistical analyses. The protocals written by all subjects on the paper sheets to investigate the misconceptions were analyzed. The statistical analysis has been tabulated on the scale of 100. On the analysis of written protocals, misconception patterns has been identified. The conclusions drawn from the results obtained in the present study are as follows; First, the belief systems in solving problems is splited almost equally, 52.95% students with the belief vs 47.05% students with lack of the belief in their efforts to tackle the problems. Almost half of them lose their belief in solving the problems as soon as they given. Therefore, it is suggested that they should be motivated with the mathematical problems derived from the daily life which drew their interests, and the individual difference should be taken into account in teaching mathematical problem solving. Second. the students who readily approach the problems are full of confidence. About 56% students of all subjects told that they enjoyed them and studied hard, while about 26% students answered that they studied bard because of the importance of the mathematics. In total, 81.5% students built their confidence by studying hard. Meanwhile, the students who are poor in mathematics are lack of belief. Among are the students accounting for 59.4% who didn't remember how to solve the problems and 21.4% lost their interest in mathematics because of lack of belief. Consequently, the internal factor accounts for 80.8%. Thus, this suggests both of the cognitive and the affective objectives should be emphasized to help them build the belief on mathematical problem solving. Third, the effects of the belief systems in problem solving ability show that the students with high belief demonstrate higher ability despite the lack of the memory of the problem solving than the students who depend upon their memory. This suggests that we develop the mathematical problems which require the diverse problem solving strategies rather than depend upon the simple memory. Fourth, the analysis of the misconceptions shows that the students tend to depend upon the formula or technical computation rather than to approach the problems with efforts to fully understand them This tendency was generally observed in the processes of the problem solving. In conclusion, the students should be taught to clearly understand the mathematical concepts and the problems requiring the diverse strategies should be developed to improve the mathematical abilities.

Keywords