Hydrolysis Mechanism of Phenyl-N-benzoylchlorothioformimidate Derivatives

Phenyl-N-benzoylchlorothioformimidate 誘導體의 加水分解 反應메카니즘

  • Ki-Sung Kwon (Department of Chemistry, Chungnam National University) ;
  • Chon-Suk Kim (Department of Chemistry, Chungnam National University) ;
  • Yong-Gu Lee (Department of Chemistry, Chungnam National University) ;
  • Nack-Do Sung (Department of Agricultural Chemistry, Chungnam National University)
  • 권기성 (충남대학교 이과대학 화학과) ;
  • 김천석 (충남대학교 자연과학대학 화학과) ;
  • 이용구 (충남대학교 자연과학대학 화학과) ;
  • 성낙도 (충남대학교 농과대학 농화학과)
  • Published : 1992.08.20

Abstract

The rate constants of hydrolysis of phenyl-N-benzoylchlorothioformimidates were determined by UV spectrophotometry in 30% (v/v) aqueous dioxane at $25^{\circ}C$. On the basis of rate equation, general base catalysis, solvent effect, substituent effect, thermodynamic parameters, frontier orbital interaction and hydrolysis product analysis, it may be concluded that the hydrolysis of phenyl-N-benzoylchlorothioformimidates proceeds through $S_N1$ mechanism via azocarbocation intermidiate below pH 10.0, while above pH 10.00 the hydrolysis proceeds through nucleophilic addition-elimination ($Ad_{N-E}$) mechanism. In the range of pH from 10.0 to 11.0 these two reaction occur competitively.

$25^{\circ}C$의 30%(v/v) dioxane-물의 혼합용매 속에서 pH 변화에 따른 X와 Y-치환된 phenyl-N-benzo-ylchlorothioformimidates(S)들의 가수분해 반응 속도상수를 측정하여 반응 속도식을 유도하고, 경계 궤도함수 상호작용, 용매 효과, 일반 염기 촉매효과, 열 역학적 활성화 파라미터, 및 가수분해반응 생성물 분석 등의 결과로부터 pH 10.0 이하의 낮은 pH 에서는 azocarbocation 중간체를 지나는 $S_N1$형 반응, pH 11.0이상의 높은 pH에서는 사면체 중간체를 지나는 친핵성 첨가-제거 ($Ad_{N-E}$)반응 그리고 pH 10.0과 11.0 사이에서는 이들 두가지 유형의 궤도 조절 반응이 서로 경쟁적으로 일어남을 제안하였다.

Keywords

References

  1. The Chemistry of Imdiate and Amidine S. Patai
  2. The Chemistry of the Carbon-Nitrogen Double-Bond S. Patai
  3. CA. 74. 100,065 G. Ernst;P. Rolf
  4. J. Chem. Soc., Perkin II A. F. Hegarty;K. S. Dignam
  5. J. Am. Chem. Soc. v.95 T. Okuyana;D. J. Sahn;G. C. Schmir
  6. J. Am. Chem. Soc. v.94 T. Okuyana;D. J. Sahn;G. C. Schmir
  7. J. Chem. Soc., Perkin II H. Ohmorin;C. Ueda;M. Masui
  8. Acc. Chem. Res. v.13 A. F. Hegarty
  9. J. Am. Chem. Soc. v.99 R. Ta-Shmna;z. Rappoport
  10. J. Am. Chem. Soc. v.98 R. Ta-Shmna;z. Rappoport
  11. J. Korean Chem. Soc. v.22 N. D. Sung;K. S. Kwon;T. R. Kim
  12. J. Korean Chem. Soc. v.28 N. D. Sung;K. S. Kwon;T. R. Kim
  13. J. Korean Chem. Soc. v.28 N. D. Sung;K. S. Kwon;T. R. Kim
  14. J. Korean Chem. Soc. v.31 N. D. Sung;K. S. Kwon;T. R. Kim
  15. J. Korean Chem. Soc. v.35 N. D. Sung;K. S. Kwon;T. R. Kim
  16. Organic Reaction Mechanism A. C. Kinipe;W. E. Watts(eds.)
  17. Organic Reaction Mechanism A. C. Kinipe;W. E. Watts(eds.)
  18. J. Chem. Soc., Perkin I O. A. Jun;M. Pietraszkiewicz
  19. The Thesis of pH. D. Degree, Graduate School of Chungnam National University C. S. Kim
  20. J. Am. Chem. Soc. v.89 J. A. Pople;M. Gordon
  21. J. Am. Chem. Soc. v.99 M. J. S. Dewar;W. Thiel
  22. J. Org. Chem. v.50 J. E. Johnson;A. Ghafeuripour;Y. K. Haug;A. W. Lordes;W. T. Pennington;O. Exner
  23. Frontier Orbital, and Organic Chemistry Reactions I. Fleming
  24. J. Am. Chem. Soc. v.90 G. Keopman
  25. J. Korean Chem. Soc. v.33 N. D. Sung;K. S. Kwon;T. R. Kim
  26. Solvents and Solvent Effects in Organic Chemistry,(2nd ed.) C. Reichardt
  27. J. Am. Chem. Soc. v.78 A. H. Fainberg;S. Winstein
  28. Acta. Chem. Scanc. v.19 A. Kivinen.
  29. Correlation Analysis in Chemistry. N. B. Chapman;J. Shorter
  30. Advances in Physical Organic Chemistry v.1 L. L. Schaleger;F. A. Long
  31. Physical Organic Chemistry N. S. Isaccs
  32. Introduction to Physical Organic Chhemistry R. D. Gilliom
  33. The Chemistry of Alkenes v.1 S. Patai
  34. J. Am. Chem. Soc. v.83 J. F. Bunnett
  35. J. Org. Chem. v.39 F. M. Menger;L. E. Glass
  36. J. Am. Chem. Soc. v.100 D. F. Detar;D. F. McMullen;N. P. Luthra