Synthesis of Stereoisomeric Trifluoroethylmandelates and Their Stereospecificity for the Uses as the Substrate of Lipases in Organic Solvent

유기용매내에서 리파제의 입체특이성 반응기질로서 이용하기 위한 Trifluoroethylmandelate의 이성질체 합성 및 입체특이성

  • Kwon Dae Young (Division of Food Science, Korea Food Research Institute.)
  • Published : 1992.02.20

Abstract

Stereoisomers of trifluoroethylmandelate(mandelic acid trifluoroethylester) were synthesized from each isomer of mandelic acid and trifluoroethanol with p-toluene sulfonic acid in order to study the enantioselectivity of lipase in organic solvent. The products were identified by $^1H$ NMR and elemental analysis and their physical properties such as melting point, densities and specific optical rotations($[{\alpha}]_{25}{^D}$) were also characterized. $[{\alpha}]_{25}{^D}$ of (+)- and (-)-trifluoroethylmandelate were +74° and -75.4°, respectively. The trifluoroethylmandelate was found out to be as a good substrate for the transesterfication stereoselectivity of lipases in organic solvent. Any significant difference of the lipase catalyzed transesterification activity between (+)- and (-)-methylchloropropionate was not found, and even lipase activity of transesterfication was not found with high optical polar (+)-and (-)-methylmandelate.

유기용매에서 리파제의 입체특이성 반응연구를 위하여 리파제의 기질로서 trifluoroethylmandelate를 도안하고 이를 mandelic acid와 trifluoroethanol를 사용하여 알코올과 산에서 에스텔을 합성하는 방법을 도입하여 합성하였다. 합성된 물질이trifluoroethylmandelate임을 $^1H$ NMR과 원소 분석을 통하여 확인하였다. (+)- 와 (-)-trifluoroethylmandelate ($[{\alpha}]_{25}{^D}$)은 각각 +74.0°and -75.4°이었다. 이 합성된 기질을 이용하여 유기용매내에서의 리파제의 입체이성질체에 대한 transesterification 속도는 서로간에 상당한 차이가 나타났다. 반면에 $[{\alpha}]_{25}{^D}$가 낮은 입체 이성질체인 (+)- 와 (-)-methylchloropropionate에서는 리파제의 활성은 있었으나 차이는 없었으며, 높은 $[{\alpha}]_{25}{^D}$를 갖는 methylmadelate는 리파제의 활성도 없었다.

Keywords

References

  1. Chemtech v.16 A. M. Klibanov
  2. Trends Biotechnol. v.6 J. S. Deetz;J. D. Rozzell
  3. Science v.224 A. Zaks;A. M. Klibanov
  4. J. Am. Chem. Soc. v.108 A. Zaks;A. M. Klibanov
  5. J. Am. Chem. Soc. v.109 A. L. Margolin;D. F. Tai;A. M. Klibanov
  6. J. Am. Chem. Soc. v.110 S. Riva;J. Chopineau;A. P. G. Kieboom;A. M. Klibanov
  7. J. Biol Chem. v.263 A. J. Russel;A. M. Klibanov
  8. Korean J. Appl. Microbiol. Bioeng. v.16 D. Han;D. Y. Kwon;J. S. Rhee
  9. J. Am. Chem. Soc. v.110 S. Riba;A. M. Klibanov
  10. Organic Synthesis Collective v.3 C. F. H. Allen;F. W. Spangler
  11. J. Am. Chem. Soc. v.26 J. F. Morris;E. H. Green
  12. Biochemichie Zeitsch v.197 P. Rona;R. Itelsohn-Schechter
  13. Biochem. J. v.115 M. Cole
  14. J. Biol Chem. v.263 A. Zaks;A. M. Klibanov
  15. Lipids v.19 K. H. Kim;D. Y. Kwon;J. S. Rhee
  16. J. Biol Chem. v.263 A. Zaks;A. M. Klibanov
  17. MS Thesis, MIT T. Sakurai
  18. J. Org. Chem. v.3 L. F. Audrieth;Kleinberg
  19. Dictionary of Origanic Compounds, Ⅵ
  20. Enzyme Structure and Mechanism A. Fersht
  21. Science L. Braco;K. Dabulis;A. M. Klibanov