DOI QR코드

DOI QR Code

Polymerization of N-(Propargyloxy)phthalimide by Transition Metal Catalysts

  • Gal Yeong-Soon (Agency for Defense Development) ;
  • Jung Bal (Agency for Defense Development) ;
  • Lee Won-Chul (Department of Textile Engineering) ;
  • Choi Sam-Kwon (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1992.12.20

Abstract

This article deals with the synthesis and characterization of poly [N-(propargyloxy)phthalimide][poly (POPI)]. The polymerization of POPI was carried out by various transition metal catalysts. $MoCl_5$-based catalysts were found to be more effective than $WCl_6$-based catalysts. However, the polymer yield was relatively low (maximum 35%). The polymerization of POPI by $PdCl_2$ gave poly (POPI) in fair yields in DMF and pyridine. The resulting poly (POPI)s were mostly insoluble in organic solvents. The infrared spectrum of poly (POPI) showed no peak at 2135 $cm^{-1}$ due to acetylenic $C{\equiv}C$ stretching frequency. Instead, the carbon-carbon double bond stretching frequency was observed at 1600-1650 $cm^{-1}$. The TGA thermogram showed that the present poly (POPI) is thermally stable up to $160^{\circ}C.$.

Keywords

References

  1. Russ. Chem. Rev. v.45 M. G. Chauser;Yu. M. Rodionov;V. M. Misin;M. I. Cherkashin
  2. Handbook of Conducting Polymers v.I Substituted Polyacetylenes H. W. Gibson;Skotheim(ed.)
  3. Polymer (Korea) v.13 Y. S. Gal;S. K. Choi
  4. Vysokomol. Soedin., Ser. A. v.17 L. A. Akopyan
  5. J. Org. Chem. v.26 L. S. Meriwether;E. C. Colthup;G. W. Kennerly;R. N. Resuch
  6. J. Polym. Sci. Poym. Chem. Ed. v.18 M. G. Voronkov;V. B. Pukhnarevich;S. P. Sushchinskaya;V. Z. Annenkova;V. M. Annnenkova;N. J. Anndreeva
  7. Polymer (Korea) v.13 W. C. Lee;M. W. Huh;Y. S. Gal;S. K. Choi
  8. Polymer (Korea) v.15 W. C. Lee;Y. S. Gal;M. S. Ryoo;S. H. Han;S. K. Choi
  9. Polym. Sci. USSR. v.17 L. A. Akopyan;S. G. Grigoryan;G. A. Zhamkochyan;S. G. Mastoyan
  10. Japan Pat., 7889;Chem. Abst. v.59 S. Okamura;K. Hayshi
  11. Gazz. Chim. Ital. v.113 A. Fulani;N. V. Russon;P. Carusi;S. Licocia;E. Leoni;G. Valenti
  12. Polymer v.22 T. Masuda;Y. Kuwane;K. Yamamoto;T. Higashimura
  13. Vysokomol. Soedin. v.17 A. D. Pomogailo;S. Kiyashkina;A. I. Kuzaev;S. B. Yechmaev;I. N. Ivleva;F. S. Dyachkovskii
  14. Bull. Korean Chem. Soc. v.9 W. C. Lee;J. E. Sohn;Y. S. Gal;S. K. Choi
  15. Polymer (Korea) v.12 W. C. Lee;J. E. Sohn;Y. S. Gal;S. K. Choi
  16. J. Polym. Sci. Polym. Lett. Ed. v.26 Y. S. Gal;S. K. Choi
  17. Macromolecules v.9 T. Masuda;K. Q. Thieu;N. Sasaki;T. Higashimura
  18. Macromolecules v.15 T. Higashimura;Y. X. Deng;T. Masuda
  19. Polymer (Korea) v.9 Y. S. Gal;H. N. Cho;S. K. Choi
  20. Polymer v.23 T. Masuda;M. Kawai;T. Higashimura
  21. J. Polym. Sci. Polym. Chem. Ed. v.22 T. Yamagata;T. Masuda;T. Higashimura
  22. Macromolecules v.17 T. Masuda;M. Yamagata;T. Higashimura
  23. Macromolecules v.23 M. S. Ryoo;W. C. Lee;S. K. Choi
  24. Macromelecules v.24 S. H. Han;U. Y. Kim;Y. S. Kang;S. K. Choi
  25. J. Am. Chem. Soc. v.106 T. J. Katz;T. H. Ho;N. Y. Shin;Y. C. Ying;V. I. W. Stuat
  26. Polymer (Korea) v.11 Y. S. Gal;S. K. Choi