Structural Stability and the Electronic Structure of InP/GaP Superlattices

  • Published : 1991.12.31

Abstract

The stability and the electronic structure of $In_0.5$.$Ga_0.5$P-based superlattices are examined through self-consistent ab initio pseudopotential calculations. A chalcopyrite-like structure is found to be the lowest energy state over (001) and (111) monolayer superlattices (MLS). Our calculations indicate that all the ordered structures in bulk form are unstable against phase segregation into binary constituents at T = 0 while for epitaxial growth, the chalcopyrite phase is stabilized. The fundamental band gaps of the ordered structures are found to be direct and smaller than that of disordered alloys. The lowering of the band gap is explainable by band folding and pushing effects. We find the reduction of the band gap to be largest for the (111) MLS.

Keywords