DOI QR코드

DOI QR Code

Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Water

  • Song Hi Lee (Department of Chemistry, Kyungsung University) ;
  • Gyeong Keun Moon (Department of Chemistry, Kyungsung University) ;
  • Sang Gu Choi (Department of Industrial Safety, Yang San Junior College)
  • Published : 1991.06.20

Abstract

In a recent $paper^1$ we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data is quite good. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be within approximately ${\pm}$30-40% error bars, which makes it possible to apply the NEMD technique to other molecular liquids.

Keywords

References

  1. Bull. Kor. Chem. Soc. v.12 C. B. Moon;G. G. Moon;S. H. Lee
  2. Phys. Rev. v.A30 D. J. Evans;G. P. Morris
  3. Comput. Phys. v.1 D. J. Evans;G. P. Morris
  4. Phys. Rev. v.A28 D. J. Evans;W. G. Hoover;B. H. Failor;B. Moran;A. J. C. Ladd
  5. Phys. Lett. v.A91 D. J. Evans
  6. Phys. Rev. v.A34 D. J. Evans
  7. J. Reine Angew. Math. v.IV K. F. Gauss
  8. J. Chem. Phys. v.91 J. R. Rustad;D. A. Yuen;F. J. Spera
  9. J. Phys. Chem. v.91 F. H. Stillinger;T. A. Weber
  10. Phys. Rev. v.B31 F. H. Stillinger;T. A. Weber
  11. J. Chem. Phys. v.92 F. O. Raineri;M. D. Wood;H. L. Friedman
  12. J. Chem. Phys. v.19 M. S. Green
  13. J. Chem. Phys. v.20 M. S. Green
  14. J. Chem. Phys. v.22 M. S. Green
  15. J. Phys. Soc. Japan v.12 R. Kubo
  16. J. Stat. Phys. v.21 G. Ciccotti;G. Jacucci;I. R. McDonald
  17. Molec. Phys. v.54 G. P. Morriss;D. J. Evans
  18. Molec. Phys. v.34 D. J. Evans
  19. Molec. Phys. v.34 D. J. Evans;S. Murad
  20. J. Phys. v.C5 A. W. Lees;S. F. Edwards
  21. J. Chem. Phys. v.79 W. L. Jorgensen;J. Chandrasekhar;J. D. Madura;R. W. Impey;M. L. Klein
  22. Molec. Phys. v.56 W. L. Jorgensen;J. D. Madura
  23. J. Chem. Eng. Data v.20 G. S. Kell
  24. Properties of Ordinary Water Substances N. E. Dorsey
  25. J. Phys. Chem. v.77 R. Mills
  26. Numerical initial Value Problems in Ordinary Differential Equations W. C. Gear
  27. Computer Applications of Numerical Methods S. H. Kuo
  28. J. Chem. Phys. v.85 M. Neumann
  29. Proceedings of the 10th Korean Scientists and Engineers Conference;Physical science part S. H. Lee;P. J. Rossky
  30. Fundamental Problems in Statistical mechanics III W. W. Wood;E. G. D. Cohen(ed.)
  31. Computer Applications of Numerical Methods S. H. Kuo
  32. Chem. Phys. Lett. v.129 A. D. Simmons;P. T. Cummings
  33. J. Phys. F: Met. Phys. v.17 P. T. Cummings;G. P. Morris
  34. J. Phys. F: Met. Phys. v.18 P. T. Cummings;G. P. Morris
  35. Inter. J. Thermo. v.10 B. Y. Wang;P. T. Cummings
  36. J. Chem. Phys. v.89 P. T. Cummings;T. L. Varner
  37. CRC Handbook of Chemistry and Physics
  38. J. Phys. Chem. Ref. Data v.15

Cited by

  1. A molecular dynamics simulation study on nematic-isotropic phase transition of rod‐like molecules in NpT ensemble vol.97, pp.9, 1991, https://doi.org/10.1063/1.463647
  2. Overestimation of Viscosity by the Green-Kubo Method in a Dusty Plasma Experiment vol.118, pp.19, 2017, https://doi.org/10.1103/physrevlett.118.195001