DOI QR코드

DOI QR Code

Application of Multichannel Quantum Defect Theory to the Triatomic van der Waals Predissociation Process

  • Chun-Woo Lee (Max-Planck-Institut fur Stromungsforschung, Department of Chemistry, College of Natural Sciences, Kyungpook Nationl University)
  • Published : 1991.04.20

Abstract

Generalized multichannel quantum defect theory [C. H. Greene et al. Phys. Rev., A26, 2441 (1982)] is implemented to the vibrational predissociation of triatomic van der Waals molecules. As this is the first one of such an application, the dependences of the quantum defect parameters on energy and radius are examined carefully. Calculation shows that, in the physically important region, quantum defect parameters remain smoothly varying functions of energy for this system as in atomic applications, thus allowing us very coarse energy mesh calculations for the photodissociation spectra. The choice of adiabatic or diabatic potentials as reference potentials for the calculation of quantum defect parameters as done by Mies and Julienne [J. Chem. Phys., 80, 2526 (1984)] can not be used for this system. Physically motivated reference potentials that may be generally applicable to all kinds of systems are utilized instead. In principle, implementation can be done to any other predissociation processes with the same method.

Keywords

References

  1. Rep. Prog. Phys. v.46 M. J. Seaton
  2. Phys. Rev. v.A2 U. Fano
  3. J. Opt. Soc. Am. v.65 U. Fano
  4. Atomic Collisions and Spectra U. Fano;A. R. P. Rau
  5. J. Phys. v.B17 A. Giusti-Suzor;U. Fano
  6. Adv. At. Mol. Phys. v.21 C. H. Greene;Ch. Jungen
  7. J. Phys. v.B13 A. Giusti
  8. J. Chem. Phys. v.80 A. Giusti-Suzor;Ch. Jungen
  9. J. Chem. Phys. v.80 F. H. Mies
  10. J. Chem. Phys. v.80 F. H. Mies;P. S. Julienne
  11. J. Chem. Phys. v.87 M. Raoult
  12. Adv. Chem. Phys. v.20 K. C. Janda
  13. Phys. Rev. v.A36 J. I. Cline;N. Sivakumar;D. D. Evard;K. C. Janda
  14. Molecular Collision Dynamics R. Schinke;J. M. Bowman(ed.)
  15. Phys. Rev. v.A26 C. H. Greene;A. R. P. Rau;U. Fano
  16. Quantum Mechanics L. I. Schiff
  17. Phy. Rev. v.A4 A. R. P. Rau
  18. Structure and Dynamics of Weakly Bound Molecular Complexes J. I. Cline(et al.);A. Weber(ed.)
  19. J. Chem. Phys. v.86 J. C. Drobit;M. I. Lester
  20. J. Chem. Phys. v.87 N. Halberstadt;J. A. Beswick;K. C. Janda
  21. Molecular Collision Theory M. S. Child
  22. J. Chem. Phys. v.51 R. G. Gordon
  23. Quantum Mechanic J. L. Powell;B. Crasemann
  24. J. Phys. v.B14 H. J. Korsch;H. Laurent
  25. Phys. Rev. v.A34 Byungduk Yoo;C. H. Greene
  26. Methods. Comput. Phys. v.10 W. Lester
  27. J. Phys. v.B17 J. Dubau;M. J. Seaton
  28. J. Phys. v.B17 A. Giusti-Suzor;U. Fano
  29. Phys Rev. v.A19 C. H. Greene;U. Fano;G. Strinati
  30. Rev. Mod. Phys. v.48 U. Fano;C. E. Theodosiou;J. L. Dehmer
  31. Phys. Rev. v.A20 C. H. Greene
  32. Mol. Phys. v.41 F. H. Mies
  33. Phys. Rev. v.A19 A. U. Hazi