Photoelectrochemical Conversion of $SnO_2$ Films Deosited by Spray Pyrolysis

분무 열분해법에 의해 증착된 $SnO_2$ 박막의 광전기 화학 변환 특성

  • Published : 1991.03.01

Abstract

The photoelectrochemical conversion in SnO2 films deposited by spray pyrolysis using SnCl4-alcohol solution and N2 gas has been studied. The photocurrent increases with increasing deposition temperature up to 40$0^{\circ}C$ and then decreases, and the electron affinity decreases as the deposition temperature increases to 40$0^{\circ}C$. As the concentration of the spray solution increases, the photocurrent reaches a maximum value at the concentration of 0.05M, and the electron affinity is consistent. As the thickness of the film increases, the photocurrent increases with a maximum value at the thickness of 4600$\AA$, and electron affinity does not change.

Keywords

References

  1. Australian J. Appl. Sci. v.5 no.10 Transparent Semiconducting Oxide Films R.E. Aitchison
  2. J. Electrochem. Soc. v.123 Physical Properties of SnO₂Materials 1. Preparation and Defect Structure Z.M. Jarzebki;J.P. Marton
  3. Sol. Cells. v.3 Review of Conductor-Insulator -Semiconductor(CIS) Solar Cells R. Singh;M.A. Green;K. Rajkanan
  4. J. Mat. Sci. v.10 no.1 Review, Semiconducting Transparent Thin Films Their Properies and Applications A.L. Dawar;J.C. Joshi
  5. Thin Solid Films v.102 no.1 Transparent Conductors K. L. Chopra;S. Major;D. K. Pandya
  6. J. Electrochem. Soc. v.129 no.1501 Studies on Photoelectrochemical Properties of SnO₂ Films Prepared from Organic Resinate Solution D.E. Stilwell;S.M. Park
  7. J. Electrochem. Soc. v.122 no.53 Photoeffects at Polycrystalline Tin Oxide Electrodes H. Kim;H.A. Laitinen
  8. J. Electrochem. Soc. v.124 no.215 Semiconductor Electrodes K.L. Hardee;A.J. Bard
  9. J. Electrochem. Soc. v.122 no.585 Chemical Vapor Deposition at Low Temperatures J.C. Vigue;J. Spitz
  10. Thin Solid Films. v.77 no.81 Thin Layers Deposited by the Pyrosol Process G. Blandenet;M. Court;Y. Lagarde
  11. Thin Solid Films v.121 no.275 Properties of Thin In₂O₃ and SnO₂Films Prepared by Corona Spray Pyrolysis and a Discussion of the Spray Pyrolysis Process W. Siefert
  12. J. Appl. Phys. v.53 no.3629 Physical Properties of Antimony-doped Tin Oxide Thick Films H. Kaneko;K. Miyake
  13. International Critical Tables of Numerical Data Physics Chemistry and Technology v.Ⅱ E.W. Wachburn
  14. Phil. Res. Rep. v.13 no.1 A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape L.J. van der Pauw
  15. Ind. Eng. Chem. Prod. Res. Dev. v.25 no.93 Photoeffects due to Thickness and Dopant (Sb₂O₃) in Polycrystalline TiO₂Electrodes K.H. Yoon;D.H. Kang;K.H. Kim;J.S. Choi
  16. J. Appl. Phys. v.48 Photoelectrolysis and Physical Properties of the Semiconducting Electrode WO₃ M.A. Butler
  17. J. Can. Ceram. Soc. v.148 no.1 Photoelectrolysis of Water on Semiconducting Oxide Electrodes F.P. Koffyberg
  18. Appl. Phys. Lett. v.28 Photoelectrolysis of Water in Cells with SrTiO₃Anodes J.G. Marveoides;J.A. Kafalas;D.F. Kolesar
  19. Fundamentals of Semiconductor Devices E.S. Yang
  20. Solid State Physics G. Burns
  21. J. Electrochem. Soc. v.122 On the Interpretation of Mott-Schottky Plots Determined at Semiconductor/Electrolyte System R.D. Gryse;W.P. Gomes;F. Cardon;J.Vennik
  22. J. Am. Chem. Soc. v.98 no.44 Photoassisted Electrolysis of Water by Ultraviolet Irradiation of an Antimony Doped Stannic Oxide Elecrode M.S. Wrighton;D.L. Morse;A.B. Ellis;D.S. Ginley;H.B. Abraham
  23. J. Solid State Chem. v.67 Photoeffects in Undoped and Doped SrTiO₃Ceramic Electrodes K.H. Yoon;T.H. Kim
  24. J. Appl. Phys. v.67 Photoeffects in $La {5+}$-doped BaTiO₃Ceramic Electrodes K.H. Yoon;C.H. Kwon;T.H. Kim
  25. J. Electrochem. Soc. v.121 On the Origin of the Photocatalytic Deposition of Noble Metals on TiO₂ Electrodes F. Moller;H.J. Tolle;R. Memming