초록
Bacillus subtilis를 재료로 하여 아미노산 합성에 관련된 유전자와 항생제 내성에 관련된 유전자를 균주들 간의 토양환경에서의 생존기간과 유전자전이 빈도를 측정하였다. 손수배양시 각 균주의 vegetative cell의 수는 일주일 내에 $10^{-1}$-$10^{-1.5}$배로 감소하였으나 각 포자의 수는 이보다 적게 감소하였다. 멸균된 토양에서는 각 균주의 vegetative cell과 포자의 감소는 2-4일 이내에 최초 접종할 균체수의 $10^{-15}$ - $10^{-3}$배 수준까지는 감소하였으나 그 이후로는 뚜렷한 감소 경향을 나타내지 않았다. In vitro에서 각 아미노산 합성에 관련된 두 개의 아미노산에 관련된 유전자들의 transformation frequency(형질전환빈도)는 각각 $1.3{\pm}0.6{\times}10^{-6}$ - $6.0{\pm}2.36{\times}10^{-6}$, $8.53{\pm}0.2{\times}10^{-8}$ - $1.4{\pm}0.4{\times}10^{-5}$의 범주에서 변화하였으며, 항생제 내성에 관련된 유전자들의 형질전환 빈도는 $1.5{\pm}0.2{\times}10^{-7}$ - $1.4{\pm}0.4{\times}10^{-5}$ 범주에서 변화하였다. 멸균된 토양에서는 각 아미노산 합성에 관련된 유전자들가 항생제 내성에 관련된 유전자들의 형질전환 빈도는 각각 $2.0{\times}10^{-7}$ - $2.0{\times}10^{-5}$, $2.0{\times}10^{-7}$ - $9.4{\pm}4.7{\times}10^{-6}$ 이었다 한편 두 개의 아미노산에 관련된 유전자들의 형질전환 빈도는 $2.0{\times}10^{-6}$ - $4.5{\times}10^{-6}$의 범주에서 측정되었다. 멸균되지 않는 토양에서의 항생제 내성에 관련된 유전자들의 형질변환 빈도는 멸균된 토양에서와 유사하였다. 이상의 결과로 토양에서의 유전자 전이는 transformation에 의해 이루어질 수 있음을 보여준다.
The survival and transfer of chromosomal genes coding for the synthesis of amino acids (threonine, tryptophan, histidine, leucine, methionine) and of plasmid-borne genes coding for resistance to antibiotics (chloramphenicol, kanamycin, erythromycin) by transformation in sterile and nonsterile soil (the soil was amended to 12% vol/vol with the clay mineral, montmorillonite) was studied. In pure culture, the numbers of vegetative cells of the Bacillus subtilis strains decreased by 1 to 1.5 orders of magnitude within one week, but spores of each strain showed lesser decreases. In sterile soil, the populations of vegetative cells and spores decreased by 1.5 to 3 orders of magnitude within 2 to 4 days and then showed little additional decreased. The transformation frequencies (number of transformants/numbers of donors and recipients) of individual amino acid-genes invitro ranged from $1.3{\pm}0.6{\times}10^{-6}$ to $6.0{\pm}2.36{\times}10^{-6}$, of two amino acid-genes from $8.5{\pm}0.7{\times}10^{-8}$ to $3.1{\pm}0.6{\times}10^{-7}$, and of the antibiotic-resistance genes from $1.5{\pm} 0.2{\itmes} 10^{-7}$ to $1.4{\pm} 0.4{\times} 10^{-5}$ . In sterile soil, the frequencies of transfer of individual amino acid-genes ranged from $2.0{\times} 10^{-7}$ to $2.0{\times} 10^{-5}$ and of the antibiotic-resistance genes from $2.0{\times} 10^{-7}$ to $9.4{\pm} 4.7{\times} 10^{-6}$. The transfer of two amino acid-genes in sterile soil was detected at a frequency of $2.0{\times} 10^{-6}$ to $4.5{\times} 10^{-6}$, but only in three instances. The transformation frequencies of antibiotic-resistance genes in nonsterile soil were essentially similar to those in sterile soil. However, to detect transformants in nonsterile soil, higher concentrations of antibiotics were needed, as the result of the large numbers of indigenous soil bacteria resistant to the concentration of antibiotics used in the sterile soil and in vitro studies. The results of these studies show that genes can be transferred by transformation in soil and that this mechanism of transfer must be considered in risk assessment of the release of genetically engineered microorganisms to the environment.