Oxygen Ring Formation Reaction of Mono-Oxo Bridged Binudear Molybdenum (Ⅴ) Complex (Ⅲ). Reaction of $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$ with solvent Water in Binary Aqueous Mixtures

한개의 산소다리를 가진 몰리브덴(V) 착물의 산소고리화 반응 (제 3 보). 2 성분 혼합용매에서 용매물과 $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$의 반응

  • Sang Oh Oh (Department of Chemistry, College of Natural Science, Kyungpook National University) ;
  • Huee Young Seok (Department of Chemistry, College of Natural Science, Kyungpook National University)
  • 오상오 (경북대학교 자연과학대학 화학과) ;
  • 석휘영 (경북대학교 자연과학대학 화학과)
  • Published : 1988.12.20

Abstract

The rates of oxygen ring formation of $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$ have been investigated spectrophotometric method in binary aqueous mixtures. Temperature was $20^{\circ}C$ to $40^{\circ}C$ and pressure was varied up to 1500 bar. The observed rate constants are increased by hydrogen ion and decreased by thiocyanate. The more increasing of co-solvents dielectric constant, the more stable intermediate is formed. The observed rate constant is given by, $k_{obs}^{-1} = k^{-1} (1 + K^{-1}[H_2O]^{-1}) All activation parameters are positive values. The oxygen ring formation of [Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$ is believed to be a interchange-dissociative mechanism..

이성분 혼합용매 속에서 $[Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$의 산소고리화 반응에 대한 속도론적 연구는 분광광도법으로 수행되었다. 이 때 온도는 $20^{\circ}C$ 에서 $40^{\circ}C$, 압력은 1bar에서 1500 bar로 변화시켰다. 관찰된 속도 상수는 수소이온 농도의 증가에 따라 증가하고 티오시안이온 농도의 증가에 따라서는 감소한다. 공용매의 유전상수가 증가할수록 더욱 안정한 중간체가 형성된다. 관찰된 속도상수는 $k_{obs}^{-1} = k^{-1} (1 + K^{-1}[H_2O]^{-1})로 주어진다. 모든 활성화파라미터는 양의 값이다. [Mo_2O_3(Ox)_2(OxH)_2(NCS)_2]$의 산소고리화 반응은 Id 메카니즘에 의해 진행된다.

Keywords

References

  1. Progress in Inorganic Chemistry v.22 E. I. Stiefel;S. J. Lippard
  2. Structure and Bonding v.11 R. C. Bray;J. C. Swann
  3. Progress in Inorganic Chemistry v.22 E. I. Stiefel;S. J. Lippard
  4. Inorg. Chem. v.8 M. Ardon;A. Pernick
  5. J. Inorg. Nucl. Chem. v.25 P. C. H. Mitchell
  6. J. Inorg. Nucl. Chem. v.33 H. K. Saha;M. C. Halder
  7. J. Korean. Chem. Soc. v.30 S. O. Oh;J. K. Kwon;C. S. Kim
  8. J. Korean Chem. Soc. v.32 S. O. Oh;H. Y. Seok
  9. J. Chem. Soc (Dalton Trans). M. Chaudhury
  10. J. Inorg. Nucl. Chem. v.24 G. P. Haight
  11. Bioinorganic Chemistry v.8 C. A. Mcauliffe;B. J. Sayle
  12. Purification of Laboratory Chemicals D. D. Perrin;W. L. F. Armarego;D. R. Perrin
  13. J. Korean. Chem. Soc. v.26 S. O. Oh;J. D. Rhee
  14. Vogel's Textbook of Quantitative Inorganic Analysis J. Bassett;R. C. Denny;G. H. Jeffery;J. Mendhen
  15. High-Temprature High-Pressure v.7 H. Lontz;S. O. Oh
  16. Liquid Phase High Pressure Chemistry N. S. Isaacs
  17. Inorg. Chem. v.18 T. Matsuda;K. Tanaka;T. Tanaka
  18. Instrumental Analisis H. H. Bauer;G. D. Christian;J. E. O'Reilley
  19. Inorg. Chem. v.13 B. J. Trazebiatowska;M. F. Rudolf;L. Natkanec;H. Sabat
  20. J. Inorg. Nucl. Chem. v.34 H. K. Saha;M. C. Halder
  21. Inorg. Chem. v.13 W. E. Newton;J. L. Corbin;D. C. Bravard;J. E. Searles;J. W. Mcdonald
  22. Inorg. Chem. v.23 C. S. Kim;R. K. Murmann
  23. Inorg. Chem. v.19 R. K. Murmann
  24. Inorganic and Organomethallic Reaction Mechanism J. D. Atwood
  25. The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes R. G. Wilkins
  26. J. Am. Chem. Soc. v.89 H. S. Golinkin;I. Lee;J. B. Hyne
  27. The Review of Physical Chemistry of Japan v.50 R. V. Eldik;H. Kelm