DOI QR코드

DOI QR Code

Electrical Conductivity of the Spinel CoFe$_2O_4$ Solid Solution

  • Lee, Doo-Yeon (Department of Chemistry, Yonsei University) ;
  • Kim, Don (Department of Chemistry, Yonsei University) ;
  • Kim, Keu-Hong (Department of Chemistry, Yonsei University) ;
  • Choi, Jae-Shi (Department of Chemistry, Yonsei University)
  • Published : 1988.12.20

Abstract

Spinel $CoFe_2O_4$ solid solutions containing up to 50 mol% CoO were synthesized with spectroscopically pure CoO and ${\alpha}-Fe_2O_3$ polycrystalline powders. The spinel structures of the $CoFe_2O_4$ solid solutions were analyzed from XRD patterns and the Mossbauer spectra showed that the quenched $CoFe_2O_4$ had a partially inversed spinel structure ($Co_{0.23}Fe_{0.77}$) < $Co_{0.77}Fe_{1.23}$ > $O_4$, while the slowly cooled $CoFe_2O_4$ was completely inversed spinel ($Co_{0.04}Fe_{0.96}$) <$Co_{0.96}Fe_{1.04}$ > $O_4$. The $CoFe_2O_4$ specimens containing 10, 20, 30 and 40 mol% CoO turned to be a mixture of corundum and spinel structures. Electrical conductivities were measured as a function of temperature from 300 to $900^{\circ}C$ under oxygen partial pressures from $10^{-3}$ to 1 atm. The temperature dependencies of the electrical conductivity show different behaviors in the low- and high-temperature regions. The average activation energies are 0.23 eV and 0.80 eV in the low- and high-temperature regions, respectively. It is suggested that $Co^{2+} {\to} CO^{3+} + e^-$ and $Fe^{2+} {\rightleftharpoons} Fe^{3+} + e^-$ are the main conduction mechanisms responsible for the electronic conduction in the low- and high-temperature regions, respectively.

Keywords

References

  1. J. Phys. Chem. Solids v.23 D. S. Tanhauser
  2. Phys. Rev. v.93 F. J. Morin
  3. Physica v.32 G. A. Acket;J. Volger
  4. Phys. Rev. v.158 H. J. Van Daal;A. J. Bosman
  5. J. Phys. Chem. v.85 K. H. Kim;J. S. Choi
  6. J. Phys. Chem. v.65 O. N. Salman
  7. J. Chem. Soc. London O. S. M. Bevan;J. P. Shelton
  8. Solid State Physics v.3 F. A. Kroger;H. J. Vink
  9. Nature v.188 H. Lord;R. Parker
  10. Advan. Phys. v.19 no.77 A. J. Bosman;H. J. Van Daal
  11. Z. Phys. Chem. v.B32 C. Wagner;E. Koch
  12. J. Chem. Phys. v.44 B. Fisher;D. S. Tannhauser
  13. Trans. AIME v.200 R. E. Carter;F. D. Richardson
  14. J. Phys. Chem. Solids v.29 F. G. Eror;J. B. Wagner Jr
  15. Vuoritellisuus-Bergshanteringen R. Makkonen
  16. Solid State Comm. v.8 M. Gvishi;D. S. Tannauser
  17. J. Appl. Phys. v.39 no.2 G. A. Sawatzky;F. Van der Woude;A. H. Morrish
  18. J. Phys. Chem. Solids v.3 J. D. Dunitz;L. E. Orgel
  19. J. Phys. Chem. Solids v.41 H. L. Yakel
  20. Kinet. Katal. v.11 G. K. Boreskov;V. V. Popovskii;N. E. Lebedeva;V. A. Sazonov
  21. Kinet. Katal. v.12 G. K. Boreskov;V. V. Popovskii;N. E. Lebedeva;V. A. Sazonov
  22. X. Am. Chem. Soc. v.80 Y. Yoneda;S. Makishima;J. Hurssa
  23. J. Catalysis v.2 R. G. Squires;G. Parravano
  24. Z. Chem. v.8 E. Litchner;G. Szalek
  25. J. Catalysis v.23 W. R. Cares;J. W. Hightower
  26. Chem. Engng. Progr. Symp. Ser. v.64 K. Gwan;R. G. Squires
  27. J. Catalysis v.21 R. J. Rennard;W. L. Khel
  28. US Pat. 34,507,886 W. L. Khel;R. J. Rennard
  29. US Pat. 2,805,187 P. N. Rylader;W. J. Zimmerschied
  30. Phys. Stat. Sol. (a) v.76 B. Gillot
  31. Physica v.22 G. H. Jonker
  32. Indian J. Chem. v.15A K. R. Kroshnamurthy;B. Viswanathan;M. V. C. Sastri
  33. Ferromagnetic Materials G. Bate;E. P. Wohiforth(ed.)
  34. Fr. 1,357,866 W. Balz;Bodische Anilin;Soda Fabric.
  35. Proc. IRE v.42 L. B. Valdes
  36. J. Phys. Chem. v.66 J. S. Choi;K. H. Yoon
  37. J. Phys. Chem. v.77 J. S. Choi;H. Y. Lee;K. H. Kim
  38. J. Phys. Chem. v.81 J. S. Choi;Y. H. Kang;K. H. Kim
  39. J. Phys. Chem. v.83 K. H. Kim;H. S. Han;J. S. Choi
  40. J. Phys. Chem. v.85 K. H. Kim;J. S. Choi
  41. J. Catal. v.86 K. H. Kim;D. Kim;J. S. Choi
  42. J. Phys. Chem. Solids v.45 K. H. Kim;E. J. Oh;J. S. Choi
  43. J. Phys. Chem. Solids v.45 K. H. Kim;H. J. Won;J. S. Choi
  44. Int. J. Chem. Kinetics v.19 S. H. Lee;G. Heo;K. H. Kim;J. S. Choi
  45. Inter. J. Chem. Kinetics. v.9 J. S. Choi;K. H. Kim;S. R. Choi
  46. J. Phys. Chem. Solids v.46 K. H. Kim;S. H. Lee;J. S. Choi
  47. J. Phys. Chem. Solids v.49 K. H. Kim;S. H. Park;D. Y. Lim;J. S. Choi
  48. J. Appl. Polymer v.34 S. H. Lee;G. Heo;K. H. Kim;J. S. Choi
  49. J. Phys. Chem. Solids v.48 S. H. Lee;G. Heo;K. H. Kim;J. S. Choi
  50. Bull. Korean Chem. Soc. v.7 no.5 K. H. Kim;S. H. Lee;J. S. Choi
  51. Phys. Stat. Sol. (a) v.73 S. A. Masen;M. A. Ahemed
  52. Phys. Stat. Sol. (a) v.76 B. Gillot;F. Jemmali
  53. Hslbleiterproblem v.6 G. Jonker;S. Hand Van Honten;F. S. Santer(ed.)
  54. Phys. Rev. v.83 F. Morin
  55. Physica v.22 G. H. Jonker

Cited by

  1. ChemInform Abstract: Electrical Conductivity of the Spinel CoFe2O4 Solid Solution. vol.20, pp.20, 1988, https://doi.org/10.1002/chin.198920013
  2. Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method vol.120, pp.1, 1988, https://doi.org/10.1016/j.snb.2006.02.008
  3. Studies on Fe-Co spinel electrodes vol.9, pp.8, 1988, https://doi.org/10.1016/j.solidstatesciences.2007.05.001