대한기계학회논문집 (Transactions of the Korean Society of Mechanical Engineers)
- 제12권1호
- /
- Pages.106-115
- /
- 1988
- /
- 1225-5963(pISSN)
DOI QR Code
점성, 압축성을 고려한 최대양력 익형설계
Design of maximum lift airfoil in viscous, compressible flow
초록
본 연구에서는 경계층 유동을 충류, 천이, 난류 영역을 포함하는 압축성 유동으로 가정하였고, Morgan 등이 제시한 새로운 질점분할 방법을 사용하여 속도분포를 계산하고, 점성 압축성 효과를 고려하기 위하여 viscous--inviscid interaction 법을 사용하였고 이 계산 결과를 기존의 실험값과 비교하여,타당성을 확인하였다.그리고 최적 양력의 익형 설계는 Augmented Lagrange multiplier 법을 사용하였고 비구속 조건을 갖는 목적함수 augmented lagrangian의 최소화는 Davidan-Fletcher-Powell 방법 중 self-scaling quasi-Newton algorithm을 사용하였다. 그리고 NACA 23012를 기본 익형으로 하고 NACA 64-2-415, NACA 64-2-A215, NACA 65-3-218를 보상 익형으로 하여 최대 양력익형을 설계 하였다.
A numerical procedure for determining the airfoil shape that maximizes the lift is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary analysis using the viscous-inviscid interaction method. The potential flow field is obtained by the vortex panel method and boundary layer flow is analyzed by means of integral approximation method which is capable of handling the laminar, transition and turbulent flow regimes. As the result of this study, it is found that the calculated flow regimes have good agreement with the existing experimented data. Davidon-Fletcher-Powell method and Augmented Lagrange Multiplier method are used for the optimal techniques. NACA 23012, NACA 65-3-21, NACA 64-2-415, NACA 64-2-A215 airfoils are used for determining the optimal airfoil shapes as a basic and compensate airfoils. Optimal design showed that the lift coefficients are increased by 17.4% at M
키워드