Abstract
Let G : R$^n$${\times}$R\longrightarrowR$^n$ be defined by a Homotopy solving a system F($\chi$)=0 of nonlinear equations. For the vector v$\^$k/ with G'(u$\sub$k/)v$\^$k/=0, ∥v$\^$k/∥=1 where uk is one point in Zero Curve let u$\sub$0/$\^$k/=v$\^$k/+$\tau$v$\^$k/ be the first prediction for the next point u$\^$k+1/, $\tau$$\in$(0, 1). When u$\sub$0/$\^$k/ approaching too losely to some unwanted point. to follow the Zero Curve may occur the returning or cycling. One lion for it is discussed and tile parametrizied Homotopy algorithm for solving F($\chi$)=0 with it been established. Also some theorems by means of the regular value have been discussed for Zero Curves of G(u)=0 and some theorems for algorithm have been obtained.